Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-119
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 97 (2013) | ISSUE 5 | PAGE 297
Interface induced states at the boundary between a 3D topological insulator and a normal insulator
Abstract
We show that, when a three-dimensional (3D) narrow-gap semiconductor with inverted band gap ("topological insulator", TI) is attached to a 3D wide-gap semiconductor with non-inverted band gap ("normal insulator", NI), two types of bound electron states having different spatial distributions and spin textures arise at the TI/NI interface. Namely, the gapless ("topological") bound state can be accompanied by the emergence of the gapped ("ordinary") bound state. We describe these states in the framework of the envelope function method using a variational approach for the energy functional; their existence hinges on the ambivalent character of the constraint for the envelope functions that correspond to the "open" or "natural" boundary conditions at the interface. The properties of the ordinary state strongly depend on the effective interface potential, while the topological state is insensitive to the interface potential variation.