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Standard Model Higgs field and energy scale of gravity
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The effective potential of the Higgs scalar field in the Standard Model may have a second degenerate

minimum at an ultrahigh vacuum expectation value. This second minimum then determines, by radiative

corrections, the values of the top-quark and Higgs-boson masses at the standard minimum corresponding to

the electroweak energy scale. An argument is presented that this ultrahigh vacuum expectation value is pro-

portional to the energy scale of gravity, EPlanck ≡
√

~ c5/GN , considered to be characteristic of a spacetime

foam. In the context of a simple model, the existence of kink-type wormhole solutions places a lower bound

on the ultrahigh vacuum expectation value and this lower bound is of the order of EPlanck.
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I. Introduction. The ATLAS and CMS collabo-

rations have recently reported results [1, 2] which ap-

pear to confirm the existence of the Higgs boson of

the Standard Model with a mass around 126 GeV/c2.

Long before that, Froggatt and Nielsen [3] gave a re-

markable prediction of the Higgs mass value (MHiggs =

= 135 ± 9 GeV/c2) based on a heuristic physical argu-

ment, multiple-point criticality. A crucial ingredient of

the prediction was the following identification for the

ultrahigh vacuum expectation value at a second degen-

erate minimum of the effective Higgs potential:

φvac,2
?∼ EPlanck ≡

√
~ c5/GN ≈ 1.22 · 1019 GeV , (1)

with the first minimum corresponding to the standard

electroweak scale, φvac,1 ≈ 246 GeV.

But the physics motivation for the identification (1)

was indirect and (1) was really only an assumption.

In fact, Froggatt and Nielsen did not calculate gravita-

tional effects (governed by Newton’s coupling constant

GN) but simply appealed to the relevance of Planckian

units as a deus ex machina. Obviously, it would be con-

ceptually important to understand why φvac,2 ∝ 1/
√
GN

and to see that the proportionality constant in (1) is in-

deed of order 1. Related issues have also been addressed

in several recent papers (see, e.g., Refs. [4–6]), but our

approach is different.

It is expected (but, of course, not proven) that the

fundamental structure of spacetime changes radically at

energies of order EPlanck or length scales of the order

of ~c/EPlanck. Over the years, various aspects of this

radical change have been considered, going under the

names of spacetime foam, superstrings, and loop quan-

tum gravity. As the aim of the present paper is rather
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modest, we will restrict ourselves to a very simple model

and a very simple calculation. Hopefully, this will give us

at least one physical argument of what may determine

the parametric dependence of φvac,2.

II. Setup. In place of the full Standard Model at

typical interaction energies and renormalization scale of

order EPlanck (described in part by the effective poten-

tial [7–11]), consider a simple classical theory with a

single scalar field and Einstein gravity. (Time scales of

the classical theory (or length scales divided by c) are

converted into inverse-energy scales by the introduction

of the Planck constant ~.) Concretely, take

• a real classical scalar field φ(x);

• a scalar potential V (φ) ≥ 0 with two degenerate

minima, V (v1) = V (v2) = 0;

• a conformal coupling of the scalar field to gravity

(coupling constant ξ = 1/6).

Our goal, now, is to perform a toy-model calcula-

tion of something like a spacetime foam. The easiest

calculation is to look for permanent static Lorentzian

wormholes [13]. For the simple classical theory consid-

ered, Sushkov and Kim [14] have indeed found regular

kink-type wormhole solutions. Remarkably, these solu-

tions only occur for the case of “small” v1 and “large”

v2 :

|v1| < EPlanck/
√
8πξ, |v2| > EPlanck/

√
8πξ, (2)

which can be written more compactly in terms of the

so-called reduced Planck energy, EP ≡ EPlanck/
√
8π.

The heuristic explanation of (2) is that for this case

the conformal factor f(φ) ≡ 1 − 8πξ φ2/(EPlanck)
2 of a

kink-type scalar field configuration φ(ρ) can vanish for

one and only one value ρ0 of the radial coordinate ρ,

whereas pairs of such points, ρ0,1 and ρ0,2, would have

a nondifferentiable solution in between (this conformal
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factor f(φ) multiplies the Ricci scalar R in the action

and further details can be found below). Note the cru-

cial role of having finite positive ξ in (2) and the possi-

bly convincing argument in favor of the value ξ = 1/6

from conformal symmetry (see, e.g., the discussion in

Ref. [4]).

But before investigating the implications of (2) for

the electroweak theory, we must make sure that a worm-

hole solution still exists if |v1| ≪ |v2|.
III. Model. We consider the following classical

model (setting GN = c = ~ = 1 and using the same

conventions as in Ref. [14]):

S =

∫
d4x

√−g
[ 1

16π
R− 1

2
gµν φ;µφ;ν −

− 1

2
ξ φ2 R− V (φ)

]
, (3a)

V (φ) =
λ

4

(
φ− v1

)2 (
φ− v2

)2
, (3b)

λ > 0, 0 ≤ v1 < v2, (3c)

ξ = 1/6. (3d)

A more realistic potential would involve logarithms of

φ2 (cf. Refs. [7–9]), but the polynomial potential (3b) is

used for simplicity.

Following Ref. [14], the spherically symmetric static

Ansatz is given by

ds2 = −A(ρ)dt2 +
dρ2

A(ρ)
+ r̂2(ρ)

(
dθ2 + sin2 θdφ2

)
, (4a)

φ = φ(ρ). (4b)

At this moment, it turns out to be useful to introduce

further model parameters:

κ ≡ m/
√
λ ≡ (v2 − v1)/2, (5a)

φ = (v2 + v1)/2, (5b)

and the following dimensionless variables:

y ≡ mρ

σ + |mρ| , (6a)

r(y) ≡ m r̂(ρ), (6b)

η(y) ≡ φ(ρ)/κ, (6c)

η ≡ φ/κ, (6d)

with a positive numerical constant σ in the definition

of the compactified dimensionless radial coordinate y.

The minima of the potential (3b) then occur for the fol-

lowing vacuum expectation values of the dimensionless

scalar field:

η1 = η − 1, η2 = η + 1. (7)

For the above Ansatz and definitions, the reduced

field equations and boundary conditions are given by

Eqs. (4.34)–(4.39) in Ref. [14], where a typo in the def-

inition of f stands to be corrected. These reduced field

equations can only be solved numerically.

IV. Numerical solution. The authors of Ref. [14]

have presented a numerical solution (also reproduced by

us) for a particular set of parameters and boundary con-

ditions, having, in particular, scalar minima η1 ≈ 1.4495

and η2 ≈ 3.4495 for model parameter η =
√
6. The cor-

responding dimensional vacuum expectation values v1
and v2 are both Planckian, whereas we are interested in

having one, v1, at the electroweak scale.

We have, therefore, obtained a numerical solution

for η1 = 0 and η2 = 2; see the caption of Figure for

the specific parameters and boundary conditions used

(the conformal factor 1 − 8πξκ2η2 vanishes at y = 0).

The resulting spacetime and scalar field configuration

(Figure) can be described as follows:

• on the “outside” of the wormhole (y > ythroat ≈
≈ −0.16), there is a smooth approach to the

standard Minkowski spacetime and the Standard

Model Higgs vacuum φ = v1;

• on the “inside” of the wormhole (y < ythroat), there

is a Planck-scale scalar field φ ∼ v2 with effective

energy densities of order −(EPlanck)
4 close to the

wormhole throat, which may be viewed as a car-

icature of what a dynamical quantum spacetime

foam can look like at ultrashort length scales.

The results shown in Figure can be expected to

give a reasonably accurate approximation of the ex-

act wormhole-type solution over the coordinate interval

−0.5 . y . 0.75.

V. Discussion. In view of these numerical results

and in line with condition (2), the first wormhole solu-

tions would occur for

v1 ≪ EPlanck, (8a)

v2 ∼
√

1

8πξ
EPlanck =

1

2

√
3

π
EPlanck ≈

≈ 5.97 · 1018 GeV, (8b)

where the conformal value (3d) for the coupling constant

ξ has been used in the last step. Now, this is indeed what

may be relevant for the renormalization-group-improved

effective potential of the Standard Model [7–9] entering

the multiple-point-criticality argument of Froggatt and

Nielsen [3], with v1 ∼ 102 GeV and v2 ∼ 1019 GeV.

Taking (8b) at face value and extrapolating one set

of NNLO results from the right panel of Fig. 4 in Ref. [12]
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Numerical solution of the reduced field equations from the spherically symmetric Ansatz (4) in the scalar-gravity model (3).

The top-left panel shows the dimensionless scalar field η as a function of the compactified dimensionless radial coordinate

y. The scalar field η(y) is seen to interpolate between the vacuum values η1 = 0 and η2 = 2, making for a non-monotonic

kink-type configuration. The further panels show the dimensionless metric functions A(y) and r(y) and the dimension-

less effective energy density ǫ(eff)[η(y), A(y), r(y)]. The dimensionless “radius” function r(y) is seen to have a minimum

value of approximately 0.6 at radial coordinate y ≈ −0.16, which corresponds to the so-called wormhole throat [13]. The

model parameters used are {ξ, λ, κ, η, σ} = {1/6, 1, 1/(2√π), 1, 10}. For the numerical solution of the reduced field equa-

tions (three second-order ordinary differential equations), the boundary conditions at y = 0 are {r(0), A(0), η(0), η′(0)} =

= {1017/1000, 40,
√
3, −3/5}, with r′(0) and A′(0) values from two constraint equations (see Ref. [14] for details)

gives the following polle masses: MHiggs = 126 GeV

and Mtop ≈ 171.4 GeV, for αs(MZ) = 0.1184.

With input values MHiggs ∈ [124 GeV, 128 GeV] and

αs(MZ) ∈ [0.1160, 0.1210], there is the following pre-

diction by linear approximation: Mtop[GeV] ≈ 171.4 +

+
(
MHiggs[GeV]− 126

)/
2 +

[
αs(MZ)− 0.1184

]/
0.0028,

with an estimated theoretical 1σ uncertainty of ±0.5

(see Ref. [12] for details and further discussion of tech-

nical issues).

We repeat that the simple classical model (3) is only

considered to describe certain aspects of the Standard

Model physics at typical interaction energies and renor-

malization scale of order EPlanck (observe, for exam-

ple, that the curvature around the v1 minimum has a

Planckian order of magnitude, contrary to what is ob-

served experimentally [1, 2]). Still, the Standard Model

fields may suffice to explain all particle physics results

known to date, including neutrino masses and mixing

(the dimension-5 term discussed in Ref. [15] would have

a mass scale M5 ∼ v2/c
2).

Let us close with two remarks. First, there is, in prin-

ciple, no problem to extend the Ansatz (4) of the simple

model to the Standard Model fields, having made an ob-

vious generalization of the degenerate potential (3b) and

adding appropriate spherically symmetric gauge fields.

Assuming that a regular solution exists, the next issue

is stability. We are moderately optimistic because the

existence and stability of the flat-spacetime kink solu-

tion in 1 + 1 dimensions does not require gauge fields

in the first place (different from the Nielsen–Olesen vor-

tex solution in the Abelian U(1) Higgs model, which, in

fact, looses its stability when embedded in the Standard

Model [16]).

Second, indirect (Cherenkov) experimental

bounds [17] require a sufficiently dilute gas of static

wormholes as considered in this paper. But, if there

exist indeed wormhole-type spacetime defects, they

are, most likely, nonstatic and without preferred frame.

The simple type of wormhole solution considered here

is only for the purpose of determining the parametric
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behavior of the ultrahigh vacuum expectation value of

a second degenerate minimum of the effective Higgs

potential.

The author thanks M. Schwarz for pointing out

Ref. [14], already several years ago.
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