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It may appear that the recently found resonance at 125 GeV is not the only Higgs boson. We point out

the possibility that the Higgs bosons appear in models of top-quark condensation, where the masses of the

bosonic excitations are related to the top quark mass by the sum rule similar to the Nambu sum rule of the

NJL models [1]. This rule was originally considered by Nambu for superfluid 3He-B and for the BCS model of

superconductivity. It relates the two masses of bosonic excitations existing in each channel of Cooper pairing

to the fermion mass. An example of the Nambu partners is provided by the amplitude and the phase modes in

the BCS model describing Cooper pairing in the s-wave channel. This sum rule suggests the existence of the

Nambu partners for the 125 GeV Higgs boson. Their masses can be predicted by the Nambu sum rule under

certain circumstances. For example, if there are only two states in the given channel, the mass of the Nambu

partner is ∼ 325 GeV. They together satisfy the Nambu sum rule M
2
1 +M

2
2 = 4M

2
t , where Mt ∼ 174GeV is

the mass of the top quark. If there are two doubly degenerated states, then the second mass is ∼ 210GeV.

In this case the Nambu sum rule is 2M
2
1 + 2M

2
2 = 4M

2
t . In addition, the properties of the Higgs modes in

superfluid 3He-A, where the symmetry breaking is similar to that of the Standard Model of particle physics,

suggest the existence of two electrically charged Higgs particles with masses around 245 GeV, which together

also obey the Nambu sum rule M
2
+ +M

2
−
= 4M

2
t .
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1. Introduction. In 1985 Nambu noticed the rela-

tion between the energy gaps of bosonic and fermionic

excitations in a certain class of the effective NJL-like

models (i.e. the models with the 4-fermion interaction)

[1]. This class includes superfluid 3He-B and s-wave su-

perconductors. The collective bosonic modes emerging

in the fermionic system (Goldstone and Higgs bosons)

can be distributed into the pairs of Nambu partners. For

each pair one has the relation, M2
1 +M2

2 = 4M2
f , where

M1 and M2 are gaps in the bosonic spectrum, and Mf

is the gap in the femionic spectrum (in relativistic sys-

tems they correspond to the masses of particles). The

similar relation was also discussed in the Nambu–Jona–

Lasinio (NJL) approximation [2] of QCD, where it re-

lates the σ-meson mass and the constituent quark mass

Mσ ≈ 2Mquark.

Here we suggest that Higgs bosons in the Standard

Model are composite objects, and they obey the same

relation which we call the Nambu sum rule

∑

M2
H,i ≈ 4M2

f . (1)

1)e-mail: volovik@boojum.hut.fi; zubkov@itep.ru

Here MH,i are the masses of composite Higgs bosons

within the given channel, and Mf is the mass of the

heaviest fermion, which contributes to their formation.

We assume that this is the top quark.

We suggest the hypothesis that Eq. (1) holds in the

theories that admit the NJL approximation if there is

the fermion whose massMf dominates the fermion spec-

trum. We apply this sum rule for the estimation of the

masses of extra Higgs bosons, since the analogy with

the superconductivity and superfluidity prompts that

the Higgs boson may be composite. (See [3, 4, 5] for the

foundation of the Higgs mechanism in quantum field

theory.)

It is worth mentioning that the particles within the

masses larger than 130 GeV are not excluded by present

experiments if they have the cross-sections smaller than

that of the standard Higgs boson of the Standard Model

[6, 7]. For example, on Fig. 4 of [8] the solid black curve

separates the region, where the scalar particles are ex-

cluded (above the curve) from the region, where they

are not excluded. In particular, the particle with mass

around 200 GeV and with the cross section about 1/3

of the Standard Model cross section is not excluded by
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these data. (The similar exclusion curve was announced

by ATLAS (plenary talk [9] at ICHEP 2012, slide 34).)

The Nambu sum rule Eq. (1) gives an important con-

straint on the bosonic spectrum. For example, if there

are only two states in the channel that contains the

discovered 125GeV Higgs boson, then the partner of

this boson should have the mass around 325GeV. Sur-

prisingly, in 2011 the CDF collaboration [10] has an-

nounced the preliminary results on the excess of events

in ZZ → lll̄l̄ channel at the invariant mass ≈ 325GeV.

CMS collaboration also reported a small excess in this

region [11]. In [12, 13] it was argued that this may point

out to the possible existence of a new scalar particle

with mass MH2 ≈ 325GeV. If there are two (doubly

degenerated) Higgs bosons in the channel that contains

the 125GeV Higgs, then the partner of the 125GeV bo-

son should have mass around 210GeV. (This possibility

is realized in the model of Section 5 of the present pa-

per.) In the channel with two states of equal masses the

245GeV Higgs bosons should appear in analogy with
3He-A considered in Section 3. A certain excess of events

in this region has been observed by ATLAS in 2011 (see,

for example, [14]).

We review several models, where the Nambu sum

rule holds. The paper is organized as follows. In Sec-

tion 2 we consider the appearance of the Nambu Sum

rule in 3He-B mentioned originally by Nambu. In Sec-

tion 3 we consider the 3D A-phase of the superfluid
3He. In this case the fermions are gapless. However, the

Nambu sum rule Eq. (1) works if in its r.h.s. the aver-

age of the angle dependent energy gap is substituted.

In Section 4 we review bosonic excitations and Nambu

sum rules in the 2D thin films of He-3. There are two

main phases, where the Nambu sum rule works within

the effective four-fermion model similar to that of 3He-

B. In Section 5 we consider how the sum rule Eq. (1)

appears in its nontrivial form in the relativistic NJL

model. Namely, we deal with the particular case consid-

ered in [15] of the model of the top-quark condensation

suggested in [16]. (This model is the direct generaliza-

tion of the original model of [17] to the case, when all 6

quarks are included.) In Section 6 we review results on

the bosonic excitations in dense quark matter. We con-

sider diquarks in Hadronic phase and the color super-

conductor in the so-called Color-Flavor Locking (CFL)

phase. In Section 7 we compare Veltman relation for the

vanishing of quadratic divergences to the scalar boson

mass with the Nambu sum rule. In Section 8 we end

with the conclusions.

2. Nambu sum rules in 3He-B. In the B-phase of
3He the condensate is formed in the spin-triplet p-wave

state, which is characterized by the quantum numbers

of spin, orbital momentum and total angular momen-

tum correspondingly S = 1, L = 1, J = 0 [18]. This

corresponds to the symmetry breaking scheme G → H

with the symmetry of physical laws G = SOS(3) ×
× SOL(3) × U(1) and the symmetry of the degenerate

vacuum states H = SOJ(3). The order parameter is

3× 3 complex matrix

Aαi = ∆δαi + uαi + ivαi . (2)

Here the first term corresponds to the equilibrium state,

with ∆ being the gap in the fermionic spectrum. The

other two terms are the deviations from the equilib-

rium. They represent 18 collective bosonic modes, which

are classified by the total angular momentum quan-

tum number J = 0, 1, 2. At each value of J = 0, 1, 2

the modes u and v are orthogonal to each other and

correspond to different values of the bosonic energy

gaps. Four modes are gapless. They represent Goldstone

bosons, which result from the symmetry breaking. The

other 14 modes are Higgs bosons with non-zero gaps.

(Higgs bosons in other condensed matter systems have

been discussed in recent papers [19–21] and in references

therein.)

The energy gaps of bosons in 3He-B are given by:

E(J)
u,v =

√

2∆2[1± η(J)], (3)

where parameters η(J) are determined by the symmetry

of the system, ηJ=0 = ηJ=1 = 1, and ηJ=2 = 1/5 [15].

Eq. (3) proves the sum rule for 3He-B found by Nambu

for 3He-B:

[E(J)
u ]2 + [E(J)

v ]2 = 4∆2 . (4)

For J = 0 there is one pair of the Nambu partners

(the gapless Goldstone sound mode and the Higgs mode,

which is called the pair-breaking mode):

E
(0)
1 = 0, E

(0)
2 = 2∆. (5)

For J = 1 there are three pairs of Nambu partners

(three gapless Goldstone modes – spin waves, and three

Higgs pair-breaking modes):

E
(1)
1 = 0, E

(1)
2 = 2∆. (6)

For J = 2 there exist five pairs of Higgs partners

– five so-called real squashing modes with the energy

gap E
(2)
1 , and, correspondingly, five imaginary squash-

ing modes with the energy gap E
(2)
2 :

E
(2)
1 =

√

2/5 (2∆), E
(2)
2 =

√

3/5 (2∆). (7)

Zeeman splitting of imaginary squashing mode in mag-

netic field has been observed in [22], for the latest ex-

periments see [23].
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3. Nambu sum rules in bulk 3He-A. In the

A-phase of 3He the condensate is formed in the state

with Sz = 0 and Lz = 1 [18]. In the orbital sector

the symmetry breaking in 3He-A is similar to that of

the electroweak theory: U(1)⊗SOL(3) → UQ(1), where

the quantum number Q plays the role of the electric

charge (see e.g. Ref. [24]), while in the spin sector one

has SOS(3) → SOS(2). The order parameter matrix has

the form

Aαi = ∆0ẑα(x̂i + iŷi) + uαi + ivαi. (8)

The A-phase is anisotropic. The special direction in the

orbital space appears that is identified with the direc-

tion of the spontaneous orbital angular momentum of

Cooper pairs, which is here chosen along the axis z. In

this phase fermions are gapless: the gap in the fermionic

spectrum depends on the angle between the momentum

k and the anisotropy axis, ∆(θ) = ∆0 sin θ, and nullifies

at sin θ = 0. The spectrum of the collective modes has

been considered in [25], see also [26] for extra Goldstone

modes related to hidden symmetry of the A-phase. The

energy spectrum of the Higgs modes has, in general, the

imaginary part due to the radiation of gapless fermions.

However, if the radiation processes are neglected, one

obtains that there are the Nambu partners that satisfy

a version of the Nambu sum rule, written in the form

E2
1 + E2

2 = 4∆̄2. (9)

The role of the square of the fermion mass is played by

the angle average of the square of the anisotropic gap

in the fermionic spectrum:

∆̄2 ≡
〈

∆2(θ)
〉

=
2

3
∆2

0. (10)

One (triply degenerated) pair of bosons (the phase

and amplitude collective modes in Nambu terminology)

is formed by the “electrically neutral” (Q = 0) massless

Goldstone mode and the “Higgs boson” with Q = 0:

E
(Q=0)
1 = 0, E

(Q=0)
2 = 2∆̄ =

√

8/3∆0. (11)

The other (triply degenerated) pair represents the ana-

log of the charged Higgs bosons in 3He-A with Q = ±2.

These are the so-called clapping modes whose energies

are

E
(Q=2)
1 = E

(Q=−2)
2 =

√
2∆̄ =

√

4/3∆0. (12)

4. Superfluid phases in 2+1 films. The same

relations (11) and (12) take place for the bosonic col-

lective modes in the quasi two-dimensional superfluid
3He films. There are two possible phases in thin films,

the A-phase and the planar phase. Both phases have

isotropic gap ∆ in the 2D case, as distinct from the 3D

case where such phases are anisotropic with zeroes in

the gap, and both have similar spectrum of 12 collective

modes: 3 Goldstone bosons and 9 Higgs modes. The en-

ergy gaps of bosons are given by Eq. (3), where instead

of J there is the corresponding quantum number. This

proves that the collective modes obey the Nambu sum

rule. The parameters η are determined by the symmetry

of the system, but in both cases they get three possible

values η = 1, η = −1, and η = 0.

Let us enumerate the modes in the thin film of A-

phase, where the symmetry breaking is SO(2)⊗SO(3)⊗
⊗ U(1) → U(1)Q ⊗ SO(2), and the bosonic modes are

classified in terms of the U(1) charge Q, which is similar

to the electric charge in Standard Model. These modes

form two pairs of Nambu partners (triply degenerated),

with Q = 0 and |Q| = 2:

E
(Q=0)
1 = 0, E

(Q=0)
2 = 2∆, (13)

E(Q=+2) =
√
2∆, E(Q=−2) =

√
2∆. (14)

This spectrum was originally obtained in Ref. [27].

Note that since masses of Q = +2 and Q = −2

modes are equal, the Nambu sum rule necessarily leads

to the definite value of the masses of the “charged”

Higgs bosons. Because of the common symmetry break-

ing scheme in the electroweak theory and in 3He-A we

consider the listed above energy gaps as an indication

of the existence of the Higgs boson with mass

MH =
√
2Mt. (15)

This mass is about 245 GeV.

5. Nambu sum rules in the relativistic mod-

els of top-quark Condensation. In this section we

consider the Nambu sum rule in the context of the ex-

tended NJL model of top-quark condensation. The sim-

plest models of this kind were considered in a number of

papers (see, for example, [17, 28, 29]). Here we consider

the particular case of the model suggested by Miransky

and coauthors in [16]. It involves 6 quarks and has the

action of the form

S =

∫

d4x
[

χ̄[i∇γ]χ+

+
8π2

NCΛ2
(χ̄αA,Lχ

βB
R )(χ̄β̄B̄,Rχ

ᾱA
L )Lα

ᾱR
β̄
βI

B̄
B

]

. (16)

Here χT
αA = (u, d); (c, s); (t, b) is the set of the doublets

with the generation index α, Λ is the dimensional pa-

rameter, NC = 3. Hermitian matrices L,R, I contain

dimensionless coupling constants. It is implied that all

eigenvalues of matrices L,R, I are close to each other.
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This means that the unknown microscopic theory should

have the approximate symmetry, which provides that

these values are equal. Small corrections to this equal-

ity gives the eigenvalues of L,R, I that only slightly

deviate from each other. (After the suitable rescaling

Λ plays the role of the cutoff, while the eigenvalues of

L,R, I are all close to 1.) The possible origin of this

pattern was discussed in [30], where it is suggested that

the given NJL model originates from the gauge theory

of Lorentz group coupled in an equal way to all existing

fermions. The basis of observed quarks corresponds to

the diagonal form of L,R, I. We denote L = diag(1 +

+Lud, 1+Lcs, 1+Ltb), R = diag(1+Rud, 1+Rcs, 1+Rtb),

I = diag(1 + Iup, 1 + Idown), and

yu = Lud +Rud + Iup, yd = Lud +Rud + Idown,

yc = Lcs +Rcs + Iup, ys = Lcs +Rcs + Idown,

yt = Ltb +Rtb + Iup, yb = Ltb +Rtb + Idown,

yud = Lud +Rud + Idown, ydu = Lud +Rud + Iup,

yuc = Lud +Rcs + Iup, ycu = Lcs +Rud + Iup,

yus = Lud +Rcs + Idown, ysu = Lcs +Rud + Iup,

... (17)

These coupling constants satisfy the relation yq1q2 +

+ yq1q2 = yq1 + yq2 . As it was mentioned above, it is

implied that |yq|, |yq1q2 | ≪ 1. Bosonic spectrum of this

model was calculated in one-loop approximation in [15].

It is implied that in vacuum the composite scalar fields

hq = q̄q are condensed for all quarks q = u, d, c, s, t, b.

The induced quark masses Mq are related to the cou-

pling constants yq, Λ as
M2

q

Λ2 log
Λ2

M2
q

= yq.

As a result we have two excitations in each qq̄ chan-

nel:

MP
qq̄ = 0; MS

qq̄ = 2Mq (18)

and four excitations (i.e. two doubly degenerated ex-

citations) in each q1q̄2 channel. We denote the masses

M±
q1q2 ,M

±
q2q1 for q1, q2 = u, d, c, s, t, b. They are given by

M2
q1q2 =M2

q1 +M2
q2 ±

±
√

(M2
q2 −M2

q1)
2ζ2q1q2 + 4M2

q1M
2
q2 (19)

with

ζq1q2 =
2yq1q2 − yq2 − yq1

yq2 − yq1
= ζq2q1 (20)

(parameters yq, yq1q2 are listed in Eq. (17)).

One can see, that the Nambu sum rule holds in the

form

[M+
q1q̄2 ]

2 + [M−
q1 q̄2 ]

2 + [M+
q2 q̄1 ]

2 + [M−
q2q̄1 ]

2 ≈
≈ 4[M2

q1 +M2
q2 ], (q1 6= q2);

[MP
qq̄]

2 + [MS
qq̄]

2 ≈ 4M2
q . (21)

In the case when the t-quark contributes to the for-

mation of the given scalar excitation, its mass domi-

nates, and in each channel (tt̄, tc̄, ...) we come to the

relation
∑

M2
H,i ≈ 4M2

t , (22)

where the sum is over the scalar excitations in the given

channel.

The symmetry breaking pattern of the con-

sidered model is UL,1(2) ⊗ U(2)L,2 ⊗ U(2)L,3 ⊗
⊗ U(1)u ⊗ ... ⊗ U(1)b → U(1)u ⊗ ... ⊗ U(1)t ⊗ U(1)b.

Among the mentioned Higgs bosons there are 12

Goldstone bosons that are exactly massless (in

the channels t(1 ± γ5)b̄, tγ5t̄, c(1 ± γ5)s̄, cγ5c̄, u(1 ±
± γ5)d̄, uγ5ū, bγ5b̄, sγ5s̄, dγ5d̄). There are Higgs bosons

with the masses of the order of the t-quark mass

(t(1 ± γ5)b̄, tt̄, t(1 ± γ5)s̄, tγ5c̄, t(1 ± γ5)d̄, tγ5ū). The

other Higgs bosons have masses much smaller than the

t-quark mass. A lot of physics is to be added in order

to make this model realistic. In particular, extra light

Higgs bosons should be provided with the masses of

the order of Mt.

6. Nambu sum rules in dense quark matter.

In dense quark matter with µ > ΛQCD there may ap-

pear several phases with different diquark condensates.

For example, in the color-flavor locking phase (CFL)

in the framework of the phenomenological model with

three massless quarks u, d, s the condensate has the form

[31, 32]

〈[ψi
α]

tiγ2γ0γ5ψj
β〉 ∼ ΦI

J ǫαβJǫ
ijI ∼ (βV )1/2C ǫαβIǫ

ijI .

(23)

The symmetry breaking pattern is SU(3)L ⊗
⊗ SU(3)R ⊗ SU(3)F ⊗ U(1)A ⊗ U(1)B → SU(3)CF .

There are 36 scalar and pseudoscalar fluctuations of Φ

around this condensate [33]). Among them there are

9 + 9 massless Goldstone modes. The remaining 9 + 9

Higgs modes contain two octets of the traceless modes

and two singlet trace modes. The quark excitations

also form singlets and octets. There are two fermionic

gaps (for the octet and for the singlet) ∆1 = 2∆8 (Sect.

5.1.2. of [32]). The scalar singlet and octet masses are

M1 = 2∆1,M8 = 2∆8. This may be derived from the

results presented in [34, 35].

We already mentioned in the introduction, that in

the Hadronic phase the NJL approximation leads to the

Nambu sum rule in the trivial form Mσ = 2Mquark.

However, at nonzero µ ≪ Mquark the Nambu sum rule

in the nontrivial form appears for the diquark states.

Namely, the following values of the masses of the di-

quarks are presented in Eq. (46) of [33]:

M2
∆ = (2Mquark − 2µ)2; M2

∆∗ = (2Mquark + 2µ)2.

(24)
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So that

M2
∆ +M2

∆∗ ≈ 2 · 4M2
quark atµ≪Mquark. (25)

(Here ∆ is the diquark while ∆∗ is the antidiquark.)

7. Veltman identity. In the case of the single

Higgs boson and in the absence of the gauge fields the

quadratic divergences in the mass of the Higgs boson

vanish if 3M2
H = 4

∑

f M
2
f (see [36–40]). Here MH is the

scalar boson mass, while the sum is over the fermions

of the model. For the model with triply degenerated

quarks, this relation is reduced to M2
H = 4

∑

f M
2
f . It

looks similar to Eq. (1). Nevertheless, their origins are

different. This follows from the fact that the cancellation

of quadratic divergences relies on the identity NC = 3

while the Nambu sum rule Eq. (1) in the models con-

sidered above works for any number of fermion colors.

Besides, the number of the components of the scalar is

relevant for Veltman relation. Therefore, its nature dif-

fers from the nature of the Nambu sum rule.

8. Conclusions and discussion. In this paper we

consider the bosonic spectrum of various NJL models:

from the condensed matter models of superfluidity to

the relativistic models of top quark condensation. In

each case the Nambu sum rule takes place that relates

the masses (or, energy gaps) of the bosonic excitations

with the mass (energy gap) of the heaviest fermion that

contributes to the formation of the given composite

scalar boson. (It is implied that its mass is essentially

larger than the masses of the other fermions that con-

tribute to the given composite boson.)

We suppose that the top quark contributes to the

formation of the composite Higgs bosons. There may

also appear the other composite Higgs bosons, whose

formation is not related to the top quark. These Higgs

bosons would be light. Since such states are not ob-

served, their formation is to be suppressed. Some physics

is to be added in order to provide this. For example,

these bosons may be eaten by some extra gauge fields

that acquire masses due to the Higgs mechanism.

The results presented in this paper belong to the

NJL-like models considered in weak coupling. In any re-

alistic models this is only an approximation. In QCD the

use of the NJL approximation is limited at low energies,

in particular, because confinement is not taken into ac-

count. However, the unknown theory, whose low energy

approximation may have the form of the NJL model,

should provide chiral symmetry breaking but cannot be

confining. (Otherwise all quarks would be confined to

the regions of space smaller than TeV−1.) This justifies

the use of this technique. Besides, Eq. (1) being derived

using the NJL approximation does not contain the pa-

rameters of the NJL model: neither the coupling enter-

ing the four-fermion terms nor the cutoff. As Nambu

noticed in [1], his sum rule may work better than the

NJL approximation itself.
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