Подавление сверхпроводимости в YNi₂B₂C при атомном разупорядочении

А. Е. Карькин¹⁾, Ю. Н. Акшенцев, Б. Н. Гощицкий

Институт физики металлов УрО РАН, 620219 Екатеринбург, Россия

Поступила в редакцию 1 февраля 2013 г. После переработки 12 февраля 2013 г.

Исследовано поведение электросопротивления $\rho(T)$, температуры сверхпроводящего перехода T_c и второго критического поля $H_{c2}(T)$ при облучении тепловыми нейтронами и последующем высокотемпературном изохронном отжиге в интервале температур $T_{\rm ann} = (100-1000)$ °C поликристаллического образца YNi_2B_2C . Обнаружено, что облучение YNi_2B_2C флюенсом $1 \cdot 10^{19}$ см⁻² приводит к подавлению сверхпроводимости (СП). Полученное разупорядоченное состояние является обратимым, т.е. исходные величины $\rho(T), T_c$ и $H_{c2}(T)$ практически полностью восстанавливаются при отжиге до $T_{\rm ann} = 1000$ °С. Для образца в СП-состоянии ($T_c = (5.5-14.5)$ K) наблюдается квадратичная зависимость $\rho(T) = \rho_0 + a_2 T^2$. При этом коэффициент a_2 (пропорциональный квадрату электронной массы m^*) практически не меняется. Вид зависимости T_c от ho_0 можно интерпретировать как подавление двух сверхпроводящих щелей, Δ_1 и Δ_2 , $(\Delta_1 \sim 2\Delta_2)$. Скорость деградации Δ_1 примерно в 3 раза больше, чем Δ_2 . Зависимости dH_{c2}/dT от ho_0 и T_c можно описать соотношениями для СП в промежуточном пределе (длина когерентности ξ_0 составляет порядка длины свободного пробега электрона l_{tr}) в предположении приблизительно постоянной плотности электронных состояний на уровне Ферми N(E_F). Наблюдаемое поведение T_c при облучении YNi_2B_2C явно не согласуется с распространенным мнением о чисто электрон-фононном механизме СП в соединениях этого типа, предполагая аномальный тип сверхпроводящего спаривания.

DOI: 10.7868/S0370274X13060118

Сверхпроводящие $(C\Pi)$ соединения типа RNi_2B_2C (rge R = Y, Lu, Er, Ho, ...) представляют интерес в связи с их относительно высокой температурой СП-перехода ($T_c \sim 15 \,\mathrm{K}$), а также различными эффектами, связанными с сосуществованием магнитного и СП-типа упорядочения [1,2]. Высокие T_c в соединениях этого типа чаще всего объясняют высоким значением плотности электронных состояний на уровне Φ ерми $N(E_{\rm F})$ и, соответственно, коэффициента электронной теплоемкости (для $YNi_2B_2C \gamma \approx 18 \text{ мДж}/(\text{моль}\cdot K^2)$ [3, 4]) в рамках обычного изотропного спаривания s-типа [4-8] с сильным электрон-фононным взаимодействием, но с двумя СП-щелями, $\Delta_1 = 2.67$ мэВ и $\Delta_2 = 1.19$ мэВ [9]. Тем не менее множество экспериментальных фактов плохо согласуется с таким сценарием. В настоящее время остается неясным, являются ли эти сверхпроводники обычными или экзотическими [9].

Полезная информация о типе спаривания может быть получена при изучении эффектов рассеяния на немагнитных примесях (дефектах). Для обычных однозонных s-волновых сверхпроводников с электронфононным взаимодействием немагнитное рассеяние, в отличие от магнитного, не является распаривающим (теорема Андерсона). Температура сверхпроводящего перехода T_c в случае изотропного однозонного сверхпроводника не меняется. Для более сложной зонной структуры немагнитное рассеяние может приводить к различным эффектам "усреднения" сверхпроводящей щелевой функции $\Delta(E)$, плотности состояний N(E) и других спектральных функций. Это может вызывать уменьшение (реже увеличение) Т_с [10–13]. Однако Т_с остается конечной, если $N(E_{\rm F})$ не обращается в нуль. Немагнитное же рассеяние является распаривающим в случае необычных сверхпроводников, для которых щелевая функция Δ имеет различные знаки для различных участков поверхности Ферми (например, спаривание d- или s^{\pm} типа). В этом случае эффекты "усреднения", возникающие при относительно слабом немагнитном рассеянии, приводят к равенству $\Delta = 0$ и, следовательно, к полному подавлению сверхпроводимости.

Эксперименты по замещению магнитными примесями (Y на Gd или Ni на Co) показали очень быстрое уменьшение T_c [14, 15], что как будто со-

¹⁾e-mail: aekarkin@rambler.ru

393

гласуется с моделью Абрикосова–Горькова (AG), описывающей эффекты распаривания при магнитном рассеянии [16]. Однако измерения электронной теплоемкости показали, что, например, в системе $Y(Ni_{2-x}Co_x)_2B_2C$ наблюдает очень сильное (в 2.5 раза) уменьшение γ [17], так что эффекты допинга, приводящие к сдвигу уровня Ферми и уменьшению $N(E_F)$, здесь играют более важную роль, чем эффекты магнитного рассеяния. Действительно, изовалентные замещения в системе $Y(Ni_{1-x}Pt_x)_2B_2C$ показывают более медленное уменьшение T_c [18].

В данной работе мы впервые изучаем влияние радиационных дефектов, индуцированных нейтронным облучением, на свойства нормального и СПсостояния поликристаллических образцов YNi₂B₂C. В [13] показано, что радиационные дефекты являются идеальными центрами немагнитного рассеяния. Поэтому облучение служит одним из тестовых экспериментов по определению типа сверхпроводящего спаривания.

Поликристаллические образцы YNi₂B₂C были приготовлены зонной плавкой стехиометрических количеств исходных элементов. Образцы содержали примеси нескольких минорных фаз, структура которых не определялась. Ниже представлены результаты исследования температурных зависимостей электросопротивления $\rho(T)$, температуры сверхпроводящего перехода T_c и второго критического поля $H_{c2}(T)$ образца YNi₂B₂C размером $3.5 \times 1.7 \times 0.7$ мм³ после облучения флюенсом тепловых нейтронов $1 \cdot 10^{19}$ см⁻² при температуре $T_{\rm irr} \approx$ ≈ 50 °C и последующего высокотемпературного изохронного отжига в интервале температур $T_{\rm ann} =$ = (100-1000) °C.

Радиационно-индуцированные нарушения кристаллической структуры в содержащих бор соединениях при облучении в атомном реакторе обусловлены взаимодействием с тепловыми нейтронами вследствие ядерной реакции ${}^{10}B+{}^{1}n \rightarrow {}^{7}Li+{}^{4}\alpha+2.8$ МэВ, так как сечение взаимодействия тепловых нейтронов с природной смесью ядер бора приблизительно на два порядка больше типичных величин для взаимодействия с быстрыми нейтронами, а энергия *α*-частицы (2.8 МэВ) также на два порядка больше типичных величин энергии первично выбитого быстрым нейтроном атома (десятки кэВ). Поэтому нарушения кристаллической структуры, создаваемые тепловыми нейтронами, оказываются на ~4 порядка более эффективными по сравнению с быстрыми. Длина свободного пробега нейтрона в YNi₂B₂C соизмерима с толщиной образца (0.5 и 0.7 мм соответственно). Однако из-за многократных атомных смещений, возникающих при облучении флюенсом $1 \cdot 10^{19} \,\mathrm{cm}^{-2}$, можно ожидать равномерного распределения радиационных дефектов по объему образца с концентрацией, максимально достижимой при данной температуре облучения $(T_{\mathrm{irr}} \approx 50 \,^{\circ}\mathrm{C})$.

Так как зонные вычисления [19, 20] показывают трехмерную структуру, что подтверждается относительно слабой анизотропией $\rho(T)$ [21] и $H_{c2}(T)$ [22], можно ожидать, что абсолютная величина электросопротивления поликристаллических образцов не будет заметно отличаться от соответствующих значений для монокристаллов. Действительно, для нашего образца при комнатной температуре $\rho \sim$ ~ 45 мкОм·см, что лишь немного превышает типичные значения для монокристаллов (~ 35 мкОм·см [21]).

Облучение YNi₂B₂C приводит к полному подавлению СП-состояния и значительной трансформации зависимостей $\rho(T)$ (рис. 1). После облучения $d\rho/dT <$ < 0 при $T \leq 380 \,\mathrm{K}$. При отжиге интервал температур, в котором $d\rho/dT < 0$, сужается. После отжига при $T_{\rm ann} = 450\,^{\circ}{\rm C}$ он сохраняется только в области низких температур, когда впервые восстанавливается сверхпроводимость. Похожее поведение $\rho(T)$ наблюдалось для многих сильно разупорядоченных соединений, для которых длина свободного пробега электрона l_{tr} близка к параметру решетки a₀ [10,11]. При T_{ann} > 450 °С в интервале температур $T < 70 \, \text{K}$ появляется приблизительно квадратичная зависимость $\rho(T) = \rho_0 + a_2 T^2$ с почти постоянной величиной $a_2 \approx 1.5 \cdot 10^{-3}$ мкОм·см, а $\rho(T)$ и T_c практически восстанавливаются до исходных значений после отжига при $T_{\rm ann} = 1000$ °C.

Средняя величина $a_2 \approx 1.5 \cdot 10^{-3}$ мкОм·см неплохо согласуется с величиной $a_2 = 1.8 \cdot 10^{-3}$ мкОм·см для LuNi₂B₂C [22]. Наблюдаемую при низких температурах квадратичную зависимость $\rho(T)$ обычно связывают с электрон-электронным рассеянием. Значение a_2 пропорционально квадрату электронной массы m^* или плотности состояний $N(E_{\rm F})$. Для исходного образца отношение $a_2/\gamma^2 \approx 0.5 \cdot 10^{-5}$, где a_2 измеряется в единицах мкОм·см, а γ – в мДж/(моль·K²), что неплохо согласуется с эмпирическим соотношением Кадоваки–Вудса [23]: $a_2/\gamma^2 = 1 \cdot 10^{-5}$. Таким образом, слабое изменение a_2 для YNi₂B₂C в СПсостоянии ($T_c = (5.5-14.5)$ K) свидетельствует также о неизменности плотности состояний $N(E_{\rm F})$.

Величины $H_{c2}(T)$, определенные как $0.9\rho_0$, где ρ_0 – величина остаточного электросопротивления, приведены на рис. 2. Использование других критериев их определения, например $0.5\rho_0$ или $0.95\rho_0$ да-

Рис. 1. Температурные зависимости электросопротивления исходного образца YNi_2B_2C (,), того же образца после облучения флюенсом $1 \cdot 10^{19}$ см⁻² и последующего отжига (–)

Рис. 2. Температурные зависимости второго критического поля $H_{c2}(T)$ для образца YNi₂B₂C. Обозначения кривых те же, что и на рис. 1. На вставке показаны кривые в приведенных координатах: 1 – теоретическая кривая в рамках HW-модели [24] в грязном пределе (1), 2 – линейная зависимость

ет, соответственно, немного меньший или немного больший наклоны кривых $H_{c2}(T)$ с очень похожими температурными зависимостями. Эти кривые заметно отклоняются от теоретической кривой Helfand-Werthamer (HW) [24]: вблизи T_c наблюдается заметная положительная кривизна H_{c2} , а в области низких температур практически отсутствует предсказываемая моделью отрицательная кривизна (вставка к рис. 2). Такую необычную зависимость $H_{c2}(T)$ объясняли в рамках 2-зонной модели в предположении двух групп носителей с существенно различающимися скоростями Ферми v_F [25]. В этом случае НW-модель в чистом пределе дает положительную кривизну вблизи Т_с и квазилинейное поведение при низких температурах. Грубо говоря, вблизи Т_с наклон dH_{c2}/dT при $T \rightarrow T_c$ определяется легкими носителями с большей T_c и меньшей $H_{c2}(0)$, а при $T \to 0$ – тяжелыми носителями с меньше
й T_c и большей $H_{c2}(0)$. Все эти особенности должны исчезать при переходе к грязному пределу.

Действительно, участок с положительной кривизной отсутствует для образца YNi_2B_2C в более разупорядоченных состояниях с $T_c < 13$ K (рис. 2). Однако квазилинейная зависимость при низких температурах остается неизменной. Очень похожее поведение зависимости $H_{c2}/H_{c2}(0)$ от $T_c/T_c(0)$ наблюдалось в допированных системах $Y(Ni_{1-x}Co_x)_2B_2C$ [17] и Lu $(Ni_{1-x}Co_x)_2B_2C$ [26].

Для облученного YNi₂B₂C T_c как функция ρ_0 описывается довольно необычной зависимостью (рис. 3). В области 6 K $< T_c < 15$ К зависимость

Рис. 3. Зависимости T_c и $-dH_{c2}/dT$ (вставка) от ρ_0 для YNi₂B₂C (1) и допированного соединения Lu(Ni_{1-x}Co_x)₂B₂C (2) из работы [15]. Пунктирные линии проведены через экспериментальные точки, сплошная линия на вставке показывает ожидаемое поведение dH_{c2}/dT в грязном пределе (1)

Письма в ЖЭТФ том 97 вып. 5-6 2013

 $T_c(\rho_0)$ приблизительно линейна и экстраполируется к $\rho_0 \approx 90 \text{ мкOм} \cdot \text{см}$ при $T_c \to 0$. В области $T_c < 6 \text{ K}$ зависимость $T_c(\rho_0)$ также грубо линейна с точками пересечения $\rho_0 \approx 270 \text{ мкOм} \cdot \text{см}$ при $T_c = 0$ и $T \approx 8 \text{ K}$ при $\rho_0 = 0$. Такая зависимость может быть интерпретирована как подавление разупорядочением двух различных СП-щелей, Δ_1 и Δ_2 ($\Delta_1 \sim 2\Delta_2$). При этом скорость подавления Δ_1 приблизительно в 3 раза больше, чем Δ_2 . Величина T_c слева от точки излома при $\rho_0 \approx 60 \text{ мкOм} \cdot \text{см}$ определяется щелью Δ_1 , а справа – щелью Δ_2 . Отметим существенно более быстрое уменьшение T_c при допировании в системе Lu(Ni_{1-x}Co_x)₂B₂C [15].

При квазилинейной зависимости $H_{c2}(T)$ наклон второго критического поля $-dH_{c2}/dT \approx H_{c2}(0)/T_c =$ $= \Phi_0/(2\pi T_c \xi^2)$, где СП-длина когерентности $\xi \approx \xi_0$ в чистом пределе $\xi_0 \gg l_{tr}$ и $\xi \approx (\xi_0 l_{tr})^{1/2}$ в грязном пределе $\xi_0 \ll l_{tr}$, $\xi_0 \approx (\hbar v_{\rm F})/(2\pi k_{\rm B} T_c)$ (здесь мы намеренно опускаем коэффициенты порядка единицы в виду приближенности используемых далее оценок).

Таким образом, в чистом пределе $(-dH_2/dT)_{clean} \sim T_c$, а в грязном пределе

$$(-dH_2/dT)_{\rm dirty} = \Phi_0 e^2)/(\hbar \pi^3 k_{\rm B})\gamma_V \rho_0,$$
 (1)

т.е. пропорциональна ρ_0 (γ_V – коэффициент электронной теплоемкости на единицу объема, $\gamma_V = 5.2 \times$ $\times 10^2 \, \text{Дж}/(\text{м} \cdot \text{K}^2)$ [3,4]). Зависимость $-dH_2/dT$ от ρ_0 (вставка на рис. 2) качественно согласуется с ожидаемым поведением для сверхпроводника в промежуточном пределе. Уменьшение $-dH_2/dT$ в области малых ρ_0 в облученном YNi₂B₂C (при $\rho_0 \leq$ ≤ 25 мкОм·см) и допированном Lu(Ni_{1-x}Co_x)₂B₂C связано с уменьшением Т_с в чистом пределе. При переходе к грязному пределу оно сменяется линейным ростом $-dH_2/dT$. В промежуточном пределе можно записать $1/\xi^2 \approx 1/(\xi_0)^2 + 1/(\xi_0 l_{tr})$, или $-dH_2/dT \approx$ $\approx (-dH_2/dT)_{\text{clean}} + (-dH_2/dT)_{\text{dirty}} = c1T_c + c_2\rho_0$, где коэффициенты c_1 и c_2 зависят только от зонных параметров $v_{\rm F}$ и $N(E_{\rm F})$. Полагая зонные параметры неизменными, что согласуется с наблюдаемыми слабыми изменениями параметра a_2 , получим линейную зависимость

$$(-dH_2/dT)/T_c = c_1 + c_2(\rho_0/T_c), \qquad (2)$$

которая показана прямой линией на рис. 4. Качественно линейная зависимость неплохо воспроизводится для облученного YNi_2B_2C при $\rho_0 \leq 60$ мкОм·см, соответствующим точке излома на рис. 3. При $\rho_0 > 60$ мкОм·см экспериментальный наклон в 2–3 раза меньше. Такое поведение, возможно, связано с различными скоростями подавления щелей

Письма в ЖЭТФ том 97 вып. 5-6 2013

Рис. 4. Зависимости $(-dH_{c2}/dT)/T_c$ от ρ_0/T_c для YNi₂B₂C (1) и допированного соединения Lu(Ni_{1-x}Co_x)₂B₂C (2) из работы [15]. Сплошная прямая показывает ожидаемое поведение $(-dH_{c2}/dT)/T_c$ в промежуточном пределе (2). На вставке те же кривые в увеличенном масштабе

 Δ_1 и Δ_2 при разупорядочении. Отметим, что для допированной системы Lu(Ni_{1-x}Co_x)₂B₂C (рис. 4) наблюдается значительное отклонение от линейной зависимости (2), что явно связано со значительным уменьшением $N(E_{\rm F})$.

Таким образом, наблюдаемое подавление сверхпроводимости при облучении $\mathrm{YNi}_2\mathrm{B}_2\mathrm{C}$ при несущественном изменении плотности состояний $N(E_{\mathrm{F}})$ явно указывает на необычный тип симметрии СПщелей, как Δ_1 , так и Δ_2 .

Для сравнения с теоретическими моделями, используем универсальное уравнение Абрикосова– Горькова (AG), описывающее подавление сверхпроводимости магнитными примесями в случае обычного *s*-спаривания и немагнитными примесями (дефектами) в случае знакопеременной щели (*d*- или s^{\pm} -спаривание) [16, 27, 28]:

$$\ln(1/t) = \psi(g/t + 1/2) - \psi(1/2), \qquad (3)$$

где $g = \hbar/(2\pi k_{\rm B}T_c(0)\tau) = \xi_0(0)/l_{tr}, \psi$ – дигамма функция, $t = T_c/T_c(0), T_c(0)$ и T_c – температуры СПперехода исходной и дефектной систем, τ – время электронной релаксации, $\xi_0(0) = \hbar v_{\rm F})/[2\pi k_{\rm B}T_c(0)]$. Уравнение (3) описывает уменьшение T_c в зависимости времени релаксации τ . Сверхпроводимость подавляется при $g > g_c = 0.28$. Безразмерный параметр g может быть сконструирован из экспериментальных величин: $g = \hbar \rho_0/(2\pi k_{\rm B}T_c\mu_0\lambda c^2)$, где λ – СП-глубина

проникновения. Таким образом, можно непосредственно сравнить эксперимент с АG-теорией. Такая схема, однако, проходит только в однозонном случае (например, *d*-спаривание в Си-содержащих ВТСП). В многозонном случае (например, s^{\pm} -спаривание в Fe-содержащих ВТСП) в уравнение (3) входит только межзонное рассеяние, которое довольно трудно вычленить из общего, дающего вклад в полную величину ρ_0 . Лучше использовать соотношение g = $= \xi_0(0)/l_{tr}$, опираясь на равенство (2) для определения отношения $\xi_0(0)/l_{tr}$, так как можно ожидать, что в этом случае спаривание и процессы рассеяния относятся к одному и тому же взаимодействию. Перепишем (2) в виде $(-dH_{c2}/dT)/T_c = \Phi_0/[2\pi(T_c)^2\xi^2) \approx$ $\approx \Phi_0 / \{2\pi [T_c(0)]^2 [\xi_0(0)]^2 \} [1 + gT_c(0)/T_c]$. В предположении, что величина $\xi_0(0)$ и соотношение $g \sim 1/l_{tr}$ в дефектной системе сохраняются, двойная отсечка оси ординат (рис. 4) на экспериментальной кривой дает $gT_c(0)/T_c = 1$. Это соответствует $\rho_0 \approx$ ≈ 50 мкОм·см, $T_c \approx 7.5$ К, $g \approx 0.5$. В результате получим приблизительное соотношение $g \approx 0.01 \rho_0$. Тогда подавление щелей Δ_1 и Δ_2 при разупорядочении (рис. 3) происходит при $g_1 \approx 0.9$ и $g_2 \approx 2.7$ соответственно, что значительно больше AG-величины $g_c = 0.28.$

Другой способ оценки параметра g – определить l_{tr} для сильно разупорядоченного состояния как $l_{tr} \approx a_0 = (V_{\text{cell}})^{1/3} \approx 5$ Å для YNi₂B₂C (где V_{cell} – объем элементарной ячейки) в том же предположении о неизменности зонных параметров в дефектном состоянии. Длина когерентности (в пределе $\rho_0 \rightarrow 0$) $\xi_0(0) \approx \{\Phi_0/[2\pi(-dH_{c2}/dT)]\}^{1/2} \approx 65$ Å [18], что дает $g = \xi_0(0)/l_{tr} \approx 13$ при $\rho_0 \approx 300$ мкОм·см. Отсюда получим $g \approx 0.04\rho_0$ и, соответственно, $g_1 \approx 3.6$ и $g_2 \approx 11$. Эти оценки еще дальше от АG-модели, что отчасти связано с тем, что в данном случае, в отличие от предыдущего, учитываются все (внутри- и межзонные) процессы рассеяния.

Таким образом, AG-уравнение значительно переоценивает скорость уменьшения T_c , так же как и для многих других необычных сверхпроводников, таких, как Fe-содержащие ВТСП [29, 30] или Lu₂Fe₃Si₅ [31]. Причины такого несоответствия могут быть связаны именно с многозонностью сверхпроводников. В этом случае относительно более медленное уменьшение T_c может быть связано со слабым немагнитным рассеянием между теми участками Ферми, которые принимают участие в СП-спаривании. Например, в случае s^{\pm} -модели [32] T_c вообще не меняется, если межзонное рассеяние полностью отсутствует. Соответственно при слабом (относительно внутризонного) межзонном рассеянии деградация сверхпроводимости должна происходить при бо́льших величинах ρ_0 , чем это следует из однозонной AG-модели. В любом случае полная деградация сверхпроводимости при облучении YNi₂B₂C явно не согласуется с обычным электрон-фононным механизмом сверхпроводимости, в рамках которого наиболее вероятная причина заметного уменьшения T_c – это уменьшение плотности электронных состояний $N(E_{\rm F})$.

Итак, наши результаты показывают быстрое уменьшение температуры СП-перехода Т_с в поликристаллическом образце YNi₂B₂C при нейтронном облучении, являющемся эффективным источником немагнитных центров рассеяния. Проведенный анализ поведения коэффициента a_2 в электросопротивлении $\rho(T) = \rho_0 + a_2 T^2$ и наклона второго критического поля $-dH_2/dT$ как функции ρ_0 и Т_с показывает относительно слабое изменение плотности электронных состояний $N(E_{\rm F})$. Так как именно уменьшение $N(E_{\rm F})$ может являться причиной уменьшения T_c в системах с обычным СП-спариванием s-типа (электрон-фононное взаимодействие), полная деградация сверхпроводимости в YNi₂B₂C при облучении указывает на то, что это соединение относится к необычным сверхпроводникам со знакопеременной СП-щелевой функцией. Зависимость T_c от ρ_0 может быть интерпретирована как индуцированное дефектами подавление двух различных СП-щелей, Δ_1 и Δ_2 ($\Delta_1 \sim 2\Delta_2$). При этом скорость подавления Δ_1 приблизительно в 3 раза больше, чем Δ_2 .

Работа выполнена по плану РАН (тема #01.2.006 13394, шифр "Импульс") при частичной поддержке программы фундаментальных исследований президиума РАН "Квантовые мезоскопические и неупорядоченные структуры" (проект #12-П-2-1018 УрО РАН), проекта РФФИ #11-02-00224 и Минобрнауки (госконтракт #14.518.11.7020).

- R. Nagarajan, C. Mazumdar, Z. Hossain et al., Phys. Rev. Lett. **72**, 274 (1994).
- R. J. Cava, H. Takagi, H. W. Zandbergen et al., Nature (London) 367, 252 (1994).
- 3. R. Coehoorn, Physica C 228, 331 (1994).
- P. Ravindram, S. Sankaralingam, and R. Asokamani, Phys. Rev. B 52, 12921 (1995).
- 5. L.F. Mattheiss, Phys. Rev. B 49, R13279 (1994).
- S. A. Carter, B. Batlogg, R. J. Cava et al., Phys. Rev. B 50, R4216 (1994).
- H. Michor, T. Holubar, C. Dusek, and G. Hilscher, Phys. Rev. B 52, 16165 (1995).
- R. S. Gonnelli, A. Morello, G. A. Ummarino et al., Int. J. Mod. Phys. B 14, 2840 (2000).

Письма в ЖЭТФ том 97 вып. 5-6 2013

397

- C. L. Huang, J.-Y. Lin, C. P. Sun et al., Phys. Rev. B 73, 012502 (2006).
- A.E. Karkin, V.E. Arkhipov, V.A. Marchenko, and B.N. Goshchitskii, Phys. Stat. Sol.(a) 54, k53 (1979).
- В.Е. Архипов, В.И. Воронин, А.Е. Карькин, А.В. Мирмельштейн, ФММ 55, 79 (1983).
- А. Е. Карькин, В. И. Воронин, Т. В. Дьячкова и др., Письма в ЖЭТФ 73, 640 (2001).
- А.Е. Карькин, Б.Н. Гощицкий, ЭЧАЯ 37, 1533 (2006).
- S. L. Bud'ko, V. G. Kogan, H. Hodovanets et al., Phys. Rev. B 82, 174513 (2010).
- K. O. Cheon, I. R. Fisher, V. G. Kogan et al., Phys. Rev. B 58, 6463 (1998).
- A. A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETP 12, 1243 (1961).
- C. C. Hoellwarth, P. Klavins, and R. N. Shelton, Phys. Rev. B 53, 2579 (1996).
- K. Takaki, A. Koizumi, T. Hanaguri et al., Phys. Rev. B 66, 184511 (2002).
- 19. L. F. Mattheiss, Phys. Rev. B 49, 3702 (1994).
- W. E. Pickett and D. J. Singh, Phys. Rev. Lett. 72, 3702 (1994).
- 21. I.R. Fisher, J.R. Cooper, and P.C. Canfield, Phys.

Rev. 56, 10820 (1997).

- K. D. D. Rathnayaka, A. K. Bhatnagar, A. Parasiris et al., Phys. Rev. B 55, 8506 (1997).
- K. Kadowaki and S. B. Woods, Sol. St. Comm. 58, 507 (1986).
- E. Helfand and N.R. Werthamer, Phys. Rev. 147, 288 (1966).
- S. V. Shulga, S.-L. Drechsler, G. Fuchs et al., Phys. Rev. Lett. 80, 1730 (1998).
- H. Schmidt and H.F. Braun, Phys. Rev. B. 55, 8497 (1997).
- A. A. Golubov and I. I. Mazin, Phys. Rev. B 55, 15146 (1997);
 I. I. Mazin, D. J. Singh, M. D. Johannes, and M. H. Du, Phys. Rev. Lett. 101, 057003 (2008).
- 28. A.V. Chubukov, D.V. Efremov, and I. Eremin, Phys. Rev. B 78, 134512 (2008).
- C. Tarantini, M. Putti, A. Gurevich et al., Phys. Rev. Lett. **104**, 087002 (2010).
- Y. Nakajima, Y. Tsuchiya, T. Taen et al., Physica C 471, 647 (2011).
- A. E. Karkin, M. R. Yangirov, Yu. N. Akshentsev, and B. N. Goshchitskii, Phys. Rev. B 84, 054541 (2011).
- 32. Y. Wang, A. Kreisel, P.J. Hirschfeld, and V. Mishra, arXiv:cond-mat/1210.7474.