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Non-stationary effects in the coupled quantum dots influenced by the

electron-phonon interaction
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We analyzed time evolution of the localized charge in the system of two interacting single level quantum

dots (QDs) coupled with the continuous spectrum states in the presence of electron-phonon interaction. We

demonstrated that electron-phonon interaction leads to the increasing of localized charge relaxation rate. We

also found that several time scales with different relaxation rates appear in the system in the case of non-

resonant tunneling between the dots. We revealed the formation of oscillations in the filling numbers time

evolution caused by the emission and adsorption processes of phonons.
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1. Introduction. Recent progress in the engineer-

ing and fabrication of well-defined artificial systems –

quantum dots (QDs) leads to the possibility of ultra

small electronic devices formation with a relatively high

control of system parameters (size, shape, and energy

spectrum) [1]. In addition to the QDs potential indus-

trial applications, these nanoscale objects provide an

ideal test ground for the study of basic physics includ-

ing, many-body interaction effects, electron transport

and time-dependent effects. Moreover, QDs integration

in a little quantum circuits deals with careful analysis

of non-equilibrium charge distribution, relaxation pro-

cesses and non-stationary effects. These processes in-

fluence strongly on the electron transport through the

system of QDs [2–7]. Electron transport in such systems

is governed not only by the Coulomb interaction be-

tween localized electrons [5–7] but also by the electron-

phonon interaction [8–10]. For correct interpretation of

non-stationary effects it is necessary to analyze the in-

fluence of electron-phonon interaction on the localized

charge time evolution because it leads to the appearance

of additional inelastic tunneling channels and results

in new specific features in the non-stationary electron

transport. Detailed analysis of quantum effects in the

system of interacting QDs in the presence of electron-

phonon interaction gives an opportunity to create high

speed electronic and logic devices.

Most of the theoretical works devoted to the problem

of electron transport through the coupled QDs in the
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presence of electron-phonon interaction deal with the

tunneling current and current-current correlations (shot

noise) investigations [10, 11]. Only a few attempts have

been made to analyze phonon assisted localized charge

relaxation [12–14]. It was found theoretically that lateral

confinement influence on the single-electron relaxation

rates in parabolic QDs [15]. Author considered the de-

formation potential coupling between electrons and lon-

gitudinal acoustic phonons, while neglecting piezoelec-

tric coupling on the grounds of it’s weaker contribution

in two dimensional structures. On the other hand fur-

ther theoretical and experimental works suggested that

electron-acoustic phonon scattering due to the piezo-

electric field interaction is relevant for momentum and

spin relaxation processes [16, 17] and may even provide

charge decoherence in laterally coupled QDs [12, 13].

In [14] authors analyzed phonon induced single electron

relaxation rates in the models of weakly confined single

and vertically coupled QDs taking into account both

mentioned above mechanisms. The regimes where each

coupling mechanism prevails were found.

In this paper we use the Keldysh diagram technique

[18] to analyze charge relaxation in double QDs due to

the coupling with the continuous spectrum states in the

presence of electron-phonon interaction. Tunneling to

the reservoir is possible only from one of the dots. We

have found that electron-phonon interaction results in

the increasing of localized charge relaxation rate and

also leads to the formation of well resolved oscillations.

2. The suggested model. In the present paper

we consider a system of coupled QDs with the single
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particle levels ε1 and ε2 connected with the continuous

spectrum states. At the initial time two electrons with

opposite spins are localized in the first QD on the en-

ergy level ε1 (n1σ(0) = n0 = 1). The second QD with

the energy level ε2 is connected with the reservoir (εp).

Relaxation of the localized charge is governed by the

Hamiltonian:

Ĥ = ĤD + Ĥtun + Ĥres. (1)

The Hamiltonian ĤD of interacting QDs

ĤD =
∑

i=1,2σ

εic
+
iσciσ +

∑

σ

T (c+1σc2σ + c1σc
+
2σ) +

+ ω0b
+b+ g(c+1σc2σ + c1σc

+
2σ)(b

+ + b) (2)

contains the spin-degenerate levels εi (indexes i = 1 and

2 correspond to the first and to the second QD) and

electron-phonon interaction. The creation/annihilation

of an electron with spin σ = ±1 within the dot is

denoted by c+iσ/ciσ and nσ is the corresponding fill-

ing number operator. Operators b+/b describe the cre-

ation/annihilation of the phonons. ω0 is the optical

phonon frequency and g is the electron-phonon coupling

constant. The interaction between the dots is described

by the tunneling transfer amplitude T which is consid-

ered to be independent of momentum and spin.

The coupling between the second dot and the contin-

uous spectrum states is described by the Hamiltonian:

Ĥtun =
∑

pσ

t(c+pσc2σ + cpσc
+
2σ), (3)

where t is the tunneling amplitude, which we assume to

be independent on momentum and spin. By consider-

ing a constant density of states in the reservoir ν0, the

tunnel rate γ is defined as γ = πν0t
2.

The continuous spectrum states are modeled by the

Hamiltonian:

Ĥres =
∑

pσ

εpc
+
pσcpσ, (4)

where c+pσ/cpσ creates/annihilates an electron with spin

σ and momentum p in the lead. Phonons are always pre-

sented in such systems and give significant contribution

to the tunneling characteristics [19]. The typical values

of optical phonons frequencies are about 50–200 meV.

So depending on the size of the QDs and the system

geometry it can be smaller or higher than the coupling

between dots, levels spacing and the value of relaxation

rate to the leads. We shall use Keldysh diagram tech-

nique to describe charge density relaxation processes in

the considered system. Time evolution of the electron

density in the QD is determined by the Keldysh Green

function G<
11 which is connected with the localized state

filling numbers in the following way:

G<
11(t, t) = in1(t). (5)

Integro-differential equations for Green function

G<T

11 (t, t
′

) without electron-phonon interaction has the

form:

G<T

11 (t, t
′

) = G0<
11 +G0R

11 T
2G0R

22 G
<
11 +

+G0R
11 T

2G0<
22 G

AT
11 +G0<

11 T
2G0A

22 G
AT
11 . (6)

The superscript T means that coupling between the

QDs and interaction with the reservoir are exactly taken

into account in the absence of electron-phonon interac-

tion. In the case when initial charge is localized in the

first QD and the second dot is empty, the third term in

the Eq. (6) can be neglected [5]. Retarded Green’s func-

tion GAT
11 (t

′

, t) = [GRT
11 (t, t

′

)]∗ yields density of states in

the first QD and can be found exactly from the integral

equation:

GRT
11 = G0R

11 +G0R
11 T

2G0R
22 G

R
11, (7)

where Green’s functions G0R
11 (t− t

′

) and G0R
22 (t− t

′

) in

the absence of coupling between the dots are determined

by the expressions:

G0R
11 (t− t

′

) = −iΘ(t− t
′

)e−iε1(t−t
′

),

G0R
22 (t− t

′

) = −iΘ(t− t
′

)e−iε2(t−t
′

)−γ(t−t
′

). (8)

The eigenfrequencies E1,2 of Eq. (7) are determined

in the following way

(E − ε1)(E − ε2 + iγ)− T 2 = 0,

E1,2 =
1

2
(ε1 + ε2 − iγ)±

1

2

√
(ε1 − ε2 + iγ)2 + 4T 2. (9)

Finally retarded Green’s function can be written as:

GRT
11 (t, t

′

)= − iΘ(t− t
′

)

[
E1 − ε2 + iγ

E1 − E2
e−iE1(t−t

′

)−

−
E2 − ε2 + iγ

E1 − E2
e−iE2(t−t

′

)

]
(10)

and interaction with the continuous spectrum states is

included in the Green’s function G0R
22 (t − t

′

). Electron-

phonon interaction results in the appearance of correc-

tions to the Green’s function GRT
11 in the Eqs. (6) and

(7). Consequently the equation for Green function has

the following form:

GR
11(t, t

′

) = G0R
11 +G0R

11 T
2G0R

22 G
R
11 +G0R

11 Σ
R
11G

R
11 +

+G0R
11 Σ

R
12G

R
21 +G0R

12 Σ
R
21G

R
11 +G0R

12 Σ
R
22G

R
21, (11)
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where self-energies ΣR
11(t, t

′

), ΣR
12(t, t

′

), ΣR
21(t, t

′

), and

ΣR
22(t, t

′

) can be written as:

ΣR
11(t, t

′

) = ig2[D>GAT
22 +DRG<T

22 ],

ΣR
12(t, t

′

) = ig2[D>GAT
21 +DRG<T

21 ],

ΣR
21(t, t

′

) = ig2[D>GAT
12 +DRG<T

12 ],

ΣR
22(t, t

′

) = ig2[D>GAT
11 +DRG<T

11 ]. (12)

In the Eq. (12) the following relation between Green

functions is used GAT
22 (t

′

, t) = [GRT
22 (t, t

′

)]∗ and expres-

sion for Green’s function GRT
22 (t, t

′

) analogous to the

equation (10) has the following form:

GRT
22 (t, t

′

) = −iΘ(t− t
′

)

[
E2 − ε1
E1 − E2

e−iE1(t−t
′

)
−

−
E1 − ε1
E1 − E2

e−iE2(t−t
′

)

]
. (13)

In our equations Green functions GT
ij (see expres-

sions (10), (13)) obtained when coupling between the

QDs and interaction with the reservoir are exactly taken

into account in the absence of electron-phonon interac-

tion. These functions also determine Σij given by the

equations [11,12]. All these Green functions are the re-

sult of summation of the infinite diagram rows. But

function Gij is of the order of T/γ compared with the di-

agonal Green functions. The last three terms in Eq. (11)

are of the order of T 2/γ2 compared to the first three

terms. Consequently, localized charge relaxation in the

presence of electron-phonon interaction is mostly gov-

erned by the term G0R
11 Σ

R
11G

R
11. So one can re-write the

equation (11) in the following way:

(G0R−1
11 − T 2G0R

22 − ΣR
11)G

R
11(t, t

′

) = δ(t− t
′

). (14)

The eigenvalues of Eq. (14) can be found from char-

acteristic equation written in the following form:

[G0R−1
11 (ω)G0R−1

22 (ω)− T 2]×

× [G0R−1
11 (ω − ω0)G

0R−1
22 (ω − ω0)− T 2]−

− g2(2N0ω + 1)G0R−1
22 (ω)G0R−1

11 (ω − ω0) = 0, (15)

where N0ω is the standard equilibrium Bose–Einstein

distribution function for phonons and functions G0R−1
ii

can be determined as

G0R−1
ii = i

∂

∂t
− εi. (16)

Consequently retarded Green’s function GR
11 can be

written in the following form:

GR
11(t, t

′

) =
∑

i

−iΘ(t− t
′

)Aie
−iEi(t−t

′

), (17)

where Ei are eigenvalues of Eq. (15). Coefficients Ai can

be found from the system of linear equations obtained

in the first order perturbation theory in the parameter

g2:

4∑

i=1

Ai = 1,

−

4∑

i=1

Ai

∑

j 6=i

Ej = −(E0
3 + E0

4 + ε2 − iγ),

4∑

i=1

Ai

∑

k 6=l 6=i

EkEl = E0
3E

0
4 + (ε2 − iγ)(E0

3 + E0
4),

4∑

i=1

Ai

j 6=i∏
Ej = −(ε2 − iγ)E0

3E
0
4 , (18)

where E0
i are the eigenvalues of Eq. (15) with electron-

phonon coupling constant g = 0,

E0
1,2 = E1,2,

E0
3,4 = ω0 + E1,2. (19)

Equation for Keldysh Green function G<
11(t, t

′

),

which determines localized charge time evolution n1(t)

than has the form:

G<
11(t, t

′

) = G0<
11 +G0R

11 T
2G0R

22 G
<
11 +

+G0R
11 T

2G0<
22 G

A
11 +G0<

11 T
2G0A

22 G
A
11 +

+G0R
11 Σ

<
11G

A
11 +G0R

11 Σ
R
11G

<
11 +G0<

11 Σ
A
11G

A
11, (20)

where self-energy Σ<
11(t, t

′

) can be written as:

Σ<
11(t, t

′

) = ig2D<(t, t
′

)G<
22(t, t

′

) (21)

with phonon function D<(t1, t2):

D<(t1, t2) = −i(Nω0 + 1)e−iω0(t1−t2) −

− iN−ω0e
iω0(t1−t2) (22)

acting with operator G0R−1
11 Eq. (20) can be re-written

in the following form:

G0R−1
11 G<

11(t, t
′

) =

(
i
∂

∂t
− ε1

)
G<

11(t, t
′

) =

= T 2

∫ ∞

0

dt1G
0R
22 (t, t1)G

<
11(t1, t

′

) +

+

∫
dt1[Σ

<
11(t, t1)G

A
11(t1, t

′

) + ΣR
11(t, t1)G

<
11(t1, t

′

)].(23)

Green’s function G<
11(t, t) = in1(t) is determined by

the sum of homogeneous and inhomogeneous solutions:

n1(t) = nh
1 (t) + ñ1(t) = nh

1(t) +

+

∫ t

0

GR
11(t, t1)Σ

<
11(t, t2)G

A
11(t2, t)dt1dt2. (24)
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Homogeneous solution of the equation can be writ-

ten in the following way:

nh
1 (t) = n0

1

∑

ij

AiA
∗
je

−i(Ei−E∗

j )t, (25)

where coefficients Ai correspond to the Green’s func-

tion GR
11, which is determined by the Eq. (17). Function

G<T

22 (t1, t2) can be written as:

G<T

22 (t1, t2) =
∑

i
′
j
′=1,2

ai′ j′ e
−iE0

i
′ t1e

iE∗0

j
′ t2 (26)

and coefficients ai′ j′ have the following form:

a11 = a22 = iT 2

|E0

2
−E0

1
|2
,

a12 = a∗21 = −a11. (27)

Consequently one can find the inhomogeneous solu-

tion of the equation

ñ1(t) = g2
4∑

iji
′
j
′=1

AiA
∗
jai′ j′ ×

×
−1

i(E∗
j − E0∗

j
′ − ω0)

1

i(Ei − E0
i
′ − ω0)

×

× [e
−i(E0

i
′+ω0)t

− e−iEit][e
i(E0∗

j
′ +ω0)t

− eiE
∗

j t]. (28)

.

Considering only the leading terms in parameters

g2/ω2
0, T 2/γ2 in Eq. (28), the following expression for

the inhomogeneous solution can be obtained:

ñ1(t) =
g2

ω2
0

T 2

γ2

2∑

i
′
j
′=1

[e
−i(E0

i
′+ω0)t

− e−iE
1
t]×

× [e
i(E0∗

j
′ +ω0)t

− eiE
∗

1
t]. (29)

For the small values of electron-phonon interaction

g/ω0 ≪ 1, relaxation of the localized charge is deter-

mined mostly by the homogeneous part of Eq. (25).

3. Results and discussion. The behavior of filling

numbers time evolution depends on the parameters of

the system: energy levels detuning, the relation between

tunneling rates and electron-phonon coupling constant,

the value of optical phonon frequency. The general fea-

ture of all dependencies is the increasing of localized

charge relaxation rate caused by the electron-phonon

interaction.

We start by discussing the filling numbers time evo-

lution in the case of the positive initial detuning between

energy levels in the coupled QDs (∆ε = ε1−ε2 > 0). Ob-

tained calculation results are presented on the Fig. 1. It

Fig. 1. Filling numbers time evolution in the presence of

electron-phonon interaction in the case of positive initial

detuning ∆ε. Black line corresponds to the case when

g = 0, grey line describes the situation when g = 0.1

and black-dashed line – g = 0.2. (a) – ∆ε = 2.0, ω0 = 2.0.

(b) – ∆ε = 1.0, ω0 = 1.0. For all the figures values of

parameters T = 0.6, γ = 1.0 are the same

is clearly evident that electron-phonon interaction leads

to the increasing of localized charge relaxation rate. The

growth of the electron-phonon coupling constant g for a

given set of system parameters results in the increasing

of filling numbers relaxation rate. With the increasing

of the initial detuning the influence of electron-phonon

interaction on the charge time evolution is clearly pro-

nounced (see Fig. 1a).

A critical value of the detuning exists in the system

under investigation for a given set of parameters which

corresponds to the relaxation regime changing. For the

smaller values of the detuning charge relaxation takes

place with the only one relaxation rate both in the pres-

ence (see grey and black-dashed lines on the Fig. 1b) and

in the absence of electron-phonon interaction (see black

line on the Fig. 1b). The typical time scale which de-

termines the localized charge relaxation is close to the

value γres = 2T 2/γ. For the larger values of detuning

than the critical one, localized charge time evolution re-

veals two typical time intervals with different values of

the relaxation rates (see Fig. 1a). The first time interval
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relaxation rate exceeds the relaxation rate of the second

time interval both in the presence and in the absence

of electron-phonon coupling. Without electron-phonon

interaction the first time interval reveals charge relax-

ation with the typical rate γres. The second time interval

demonstrates charge time evolution with relaxation rate

close to γnonres = γres(γ
2/∆ε2). When electron phonon-

coupling is involved, the filling numbers time evolution

in the first time interval reveals charge relaxation with

the typical rate very close to 2γres and in the second time

interval to −2γnonres. Consequently, electron-phonon in-

teraction results in the two times increasing of localized

charge relaxation rate.

Let us now focus on the charge relaxation processes

in the case of negative initial detuning between en-

ergy levels in the QDs (ε1 < ε2) (see Fig. 2). One

Fig. 2. Filling numbers time evolution in the presence of

electron-phonon interaction in the case of negative initial

detuning ∆ε. Black-dashed line corresponds to the case

when g = 0, grey line describes the situation when g = 0.1

and black line – g = 0.2. (a) – ∆ε = −2.0, ω0 = 2.0. (b) –

∆ε = −1.0, ω0 = 1.0. For all the figures values of parame-

ters T = 0.6, γ = 1.0 are the same. The inset demonstrates

localized charge relaxation in the case when g = 0.2

can clearly see that in the case of negative detuning

electron-phonon interaction also results in the increas-

ing of localized charge relaxation rate, but this effect is

less pronounced. Charge time evolution changes slightly

in comparison with the situation when positive detuning

occurs. In the case of negative detuning always exist sev-

eral time intervals with different values of the relaxation

rates (see Fig. 2). For the small value of initial detuning

(see Fig. 2b) relaxation rates on the both time intervals

are very close to each other and to the value γres both in

the presence and in the absence of electron-phonon in-

teraction. For the larger value of initial detuning in the

case when electron-phonon coupling is absent the first

time interval reveals charge relaxation with the typi-

cal rate γres and the second time interval corresponds

to the relaxation rate γnonres. When electron-phonon

coupling is considered, relaxation rates increase slightly

and they are continue being very close of the values γres

and γnonres for the first and second time intervals corre-

spondingly.

The most interesting effect in this energy levels con-

figuration is the formation of oscillations in the filling

numbers time evolution. Oscillations are connected with

electron-phonon interaction and they appears due to

the formation of new inelastic channel for charge re-

distribution in the double QDs. This channel is con-

nected with the emission and adsorption of phonons

during charge transfer between coupled QDs. This ef-

fect is mostly pronounced in the case when detuning

is close to the phonon frequency. Oscillations are well

pronounced for the large value of initial detuning (see

Fig. 2a and the inset). For a given set of system param-

eters the oscillations amplitude is determined by the

value of the electron-phonon coupling constant g (see

Fig. 2). The presence of oscillations may even lead to the

decreasing of filling numbers relaxation rate in compar-

ison with the case when electron-phonon interaction is

absent (see black-dashed and black lines on the Fig. 2a)

for a given set of system parameters in the particular

time intervals.

4. Conclusion. We investigated filling numbers

time evolution in the system of two interacting QDs

weakly coupled to the reservoir in the presence of

electron-phonon interaction. It was shown that electron-

phonon interaction results in the increasing of localized

charge relaxation rate. The value of extantion is deter-

mined by the system parameters such as energy levels

detuning, optical phonon frequency and the ratio be-

tween electron-phonon coupling constant and tunneling

transfer amplitudes.

We revealed that in the case of positive initial de-

tuning between energy levels in the dots the influence

of electron-phonon interaction is mostly pronounced and

the relaxation rate increases with the growth of the ini-

tial detuning value.
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We found that when negative initial detuning is

considered, the influence of electron-phonon interaction

leads to the formation of oscillations in the filling num-

bers time evolution. These oscillations are the result of

phonons emission and adsorption between the energy

levels.
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