Кулоновские корреляции и электронно-дырочная жидкость в двойных квантовых ямах

Посвящается юбилею Ю.М. Кагана

В. С. Бабиченко, И. Я. Полищук^{+*1)}

Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия

⁺Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany

* Московский физико-технический институт, 141400 Долгопрудный, Россия

Поступила в редакцию 23 апреля 2013 г.

Показано, что многочастичные кулоновские корреляции в двойных квантовых ямах с пространственно разделенными электронами и дырками приводят к образованию вырожденной электронно-дырочной жидкости со средним расстоянием между частицами, меньшим размера изолированного экситона. Это состояние оказывается энергетически более выгодным, чем газ экситонов. Результаты получены в предположении, что в системе имеется много различных сортов электронов и дырок, что характерно, в частности, для многодолинных полупроводников. Обсуждается связь с экспериментами, в которых наблюдались люминесцирующие области в таких системах.

DOI: 10.7868/S0370274X13110052

В последнее время резко возрос интерес к исследованию двойных квантовых ям (ДКЯ) в связи с возможностью экспериментальной реализации ДКЯ, в которых электроны и дырки расположены в пространственно разделенных областях, туннелирование между которыми является исчезающе малым [1]. Исследование пространственно разделенных электронов и дырок в ДКЯ было инициировано тем, что в таких системах возможно образование связанных состояний электрона и дырки (экситонов), с большим временем жизни [2]. Это время на несколько порядков больше, чем время жизни экситонов в обычных трехмерных полупроводниках, что способствует возможности наблюдения их бозе-конденсации. Дальнейшие исследования таких систем показали, что их фазовая диаграмма может быть довольно сложной (см., например, [3]).

В настоящей работе вычисляется вклад кулоновских корреляций в энергию основного состояния многокомпонентной вырожденной электроннодырочной плазмы в ДКЯ. В рассматриваемой модели ДКЯ предполагается, что электроны и дырки пространственно разделены. При этом электроны движутся в одном двумерном слое, а дырки – в другом, расположенном на расстоянии *l* от первого слоя. Рассматривается случай, когда электроннодырочная плазма является многокомпонентной. При этом имеется ν различных сортов электронов и такое же количество сортов дырок, причем $\nu \gg 1$. При достаточно малой плотности системы электроны и дырки образуют связанные состояния (экситоны). При достаточно низкой температуре система может рассматриваться как вырожденный бозегаз. Однако с увеличением плотности электроннодырочной плазмы n, когда среднее расстояние между частицами $n^{-1/2}$ становится меньше или порядка радиуса изолированного экситона $R_{\rm ex}$, связанные состояния электронов и дырок разрушаются и система трансформируется в вырожденную сильно коррелированную плазму. Впервые вычисление корреляционной энергии многокомпонентной вырожденной электронно-дырочной плазмы в обычных трехмерных многодолинных полупроводниках с числом долин $\nu \gg 1$, основанное на отборе диаграмм по параметру $1/\nu$, было проведено в работе [4]. Позднее этот подход получил дальнейшее развитие [5].

В данной работе показано, что многочастичные кулоновские корреляции приводят к существованию отрицательного минимума энергии основного состояния вырожденной электронно-дырочной плазмы в ДКЯ как функции плотности n. При этом минимум имеет место при такой плотности $n_{\rm eq}$, при которой среднее расстояние между частицами $n_{\rm eq}^{-1/2}$ является величиной, меньшей размера экситона, $n_{\rm eq}^{-1/2}$

¹⁾e-mail: iyppolishchuk@gmail.com

727

Rex. Оказывается, что указанный минимум лежит ниже энергии основного состояния экситонного газа, так что энергия системы $\varepsilon_{\rm eq}$ в расчете на одну частицу есть отрицательная величина, причем $|\varepsilon_{\rm eq}|$ имеет значение, большее величины энергии связи экситона $|\varepsilon_{ex}|$. Поэтому системе энергетически не выгодно находиться в состоянии с малой плотностью $n \ll n_{\rm eq}$, при которой она представляет собой газ экситонов. В результате система оказывается в состоянии, которое представляет собой электроннодырочную жидкость. При этом если полное число частиц таково, что плотность $n > n_{eq}$, то система является однородной, а если $n < n_{eq}$, то система распадается на капли жидкой фазы. Следует отметить, что образующаяся электронно-дырочная жидкость обладает сильными электронно-дырочными корреляциями вблизи поверхности Ферми. Характерный радиус таких корреляций оказывается больше среднего расстояния между частицами. Следовательно данные корреляции не могут быть связаны с наличием бозе-частиц, каковыми являются экситоны. Возможность существования электроннодырочных капель в полупроводниках была предсказана в работе [6]. Затем это обстоятельство было многократно подтверждено в других теоретических и экспериментальных работах (см., например, [7]). В последнем пункте рассматривается кинетика образования капель электронно-дырочной жидкости в стационарном состоянии, оценивается радиус этих капель, обсуждается возможная связь полученных результатов с рядом имеющихся экспериментов [8-16].

1. Модель. Для описания многочастичных эффектов в пространственно разделенной электроннодырочной плазме в ДКЯ предполагается, что электроны расположены в одном бесконечно тонком двумерном слое, а дырки – в другом. Ниже используется система единиц, в которой эффективный заряд электрона (дырки) $e/\sqrt{\varkappa_0} = 1$ (где \varkappa_0 – статическая диэлектрическая постоянная среды), постоянная Планка $\hbar = 1$, а эффективная масса электрона m = 1. При этом для простоты предполагается, что она равна эффективной массе дырки. Мы рассматриваем случай многокомпонентной электронно-дырочной плазмы. Число ν сортов электронов (дырок) считается большой величиной ($\nu \gg 1$). В этом случае импульс Ферми и энергия Ферми для электронов и дырок одинаковы и равны $p_{\rm F} = 2\pi^{1/2} \left(n/\nu\right)^{1/2}, \, \varepsilon_{\rm F} = 2\pi n/\nu,$ где *n* – концентрация электронов (дырок). Температура системы предполагается малой по сравнению с энергией Ферми ($T \ll \varepsilon_{\rm F}$). Таким образом, электроннодырочная плазма является вырожденной.

Письма в ЖЭТФ том 97 вып. 11-12 2013

Гамильтониан системы может быть записан в виде $\widehat{H} = \widehat{H_0} + \widehat{U}$, где $\widehat{H_0}$ – кинетическая энергия, а \widehat{U} – кулоновское взаимодействие

$$\widehat{H}_{0} = \sum_{\alpha \sigma \mathbf{k}} \frac{k^{2}}{2} a_{\alpha \sigma}^{+} \left(\mathbf{k} \right) a_{\alpha \sigma} \left(\mathbf{k} \right); \qquad (1)$$

$$\widehat{U} = \frac{1}{2S} \sum_{\substack{\alpha\alpha'\sigma\sigma'\\\mathbf{k}\mathbf{k'q}}} V_{\alpha\alpha'} \left(\mathbf{q}\right) \times \\ \times a_{\alpha\sigma}^{+} \left(\mathbf{k}\right) a_{\alpha'\sigma'}^{+} \left(\mathbf{k'}\right) a_{\alpha\sigma'} \left(\mathbf{k'-q}\right) a_{\alpha\sigma} \left(\mathbf{k+q}\right).$$
(2)

Здесь индексы $\alpha = e(h)$ относятся к электронам (дыркам), $\sigma = 1, ..., \nu$ – индекс сорта электрона (дырки), $a^+_{\alpha\sigma}(\mathbf{k})$ и $a_{\alpha\sigma}(\mathbf{k})$ – операторы рождения и уничтожения, $\mathbf{k}, \mathbf{k}', \mathbf{q}$ – двумерные импульсы. В импульсном представлении

$$V_{\alpha\alpha'}(\mathbf{q}) = \begin{cases} V(q) = 2\pi/q, & \alpha = \alpha';\\ V_{\rm eh}(q) = -(2\pi/q)e^{-ql}, & \alpha \neq \alpha'. \end{cases}$$
(3)

2. Корреляционная энергия. В данной работе учет многочастичных корреляций сводится к вычислению собственно-энергетической части $\Sigma_{\alpha,\sigma}(\varepsilon,\mathbf{p})$ как суммы диаграмм, главных по параметру $1/\nu \ll 1$. Это означает, что при отборе диаграмм учитываются только те из них, которые в каждом порядке теории возмущений по кулоновскому взаимодействию максимальны по параметру $1/\nu$. Каждая фермионная петля вносит в диаграмму вклад, пропорциональный большому параметру *v*. Поэтому в каждом порядке теории возмущений по взаимодействию мы оставляем только диаграммы, которые содержат максимальное число таких петель. Такой отбор диаграмм, по существу, является 1/и-разложением и приводит к главной последовательности диаграмм, формально совпадающей с последовательностью RPA-диаграмм. Отбор диаграмм по параметру $1/\nu \ll 1$ приводит к системе самосогласованных уравнений, диаграммное представление которых показано на рисунке. Первое

Самосогласованная система диаграммных уравнений для собственно-энергетической части функции Грина Σ . Двойная линия обозначает полную электронную (дырочную) функцию, волнистая линия – взаимодействие (3), двойная волнистая линия – перенормированное взаимодействие $U_{\alpha\beta}(\omega, \mathbf{p})$

диаграммное уравнение определяет собственноэнергетическую часть, которую можно записать в виде

$$\Sigma_{\alpha,\sigma}\left(\varepsilon,\mathbf{p}\right) = \Sigma_{\alpha,\sigma}^{\left(c\right)}\left(\varepsilon,\mathbf{p}\right) + \Sigma_{\alpha,\sigma}^{\left(\mathrm{ex}\right)}\left(\varepsilon,\mathbf{p}\right) + \Sigma_{\alpha,\sigma}^{\left(\mathrm{cor}\right)}\left(\varepsilon,\mathbf{p}\right),\tag{4}$$

$$\Sigma_{\alpha,\sigma}^{(c)} = \frac{T}{S} \sum_{\alpha'\sigma'\mathbf{k}\omega} V_{\alpha\alpha'}(0) G_{\alpha'\sigma'}(\omega,\mathbf{k}), \qquad (5)$$

$$\Sigma_{\alpha,\sigma}^{(\mathrm{ex})}\left(\varepsilon,\mathbf{p}\right) = -\frac{T}{S}\sum_{\mathbf{k}\omega}V\left(\mathbf{k}\right)G_{\alpha\sigma}\left(\varepsilon+\omega,\mathbf{p}+\mathbf{k}\right),\quad(6)$$

$$\Sigma_{\alpha,\sigma}^{(\text{cor})}\left(\varepsilon,\mathbf{p}\right) = -\frac{T}{S}\sum_{\mathbf{k}\omega}\Delta U_{\alpha\alpha}\left(\omega,\mathbf{k}\right)G_{\alpha\sigma}\left(\varepsilon+\omega,\mathbf{p}+\mathbf{k}\right),\tag{7}$$

$$\Delta U_{\alpha\alpha}\left(\omega,\mathbf{k}\right) = U_{\alpha\alpha}\left(\omega,\mathbf{k}\right) - V\left(\mathbf{k}\right),\tag{8}$$

где $G^{0}_{\alpha,\sigma}(\omega, \mathbf{p}) = [i\omega + \mu - \Sigma_{\alpha,\sigma}(\omega, \mathbf{p}) - \varepsilon_{\mathbf{p}}]^{-1}$ – перенормированная мацубаровская функция Грина электрона (дырки), $\varepsilon_{\mathbf{p}} = \mathbf{p}^{2}/2$, ω – мацубаровская частота, $\Sigma_{\alpha,\sigma}(\omega, \mathbf{p})$ – Собственно-энергетическая часть, μ – химический потенциал, T – температура системы, S – площадь слоя, $\Sigma^{(c)}_{\alpha,\sigma}$ – вклад в собственно-энергетическую часть прямого кулоновского взаимодействия, $\Sigma^{(ex)}_{\alpha,\sigma}(\varepsilon, \mathbf{p})$ – вклад обменного взаимодействия, $\Sigma^{(cor)}_{\alpha,\sigma}(\varepsilon, \mathbf{p})$ – корреляционный вклад.

Перенормированное взаимодействие $U_{\alpha\beta}(\omega, \mathbf{p})$, входящее в (7), удовлетворяет второму диаграммному уравнению, которое имеет вид

$$U_{\alpha\beta}(\omega, \mathbf{p}) = V_{\alpha\beta}(\mathbf{p}) + \sum_{\alpha'\sigma} V_{\alpha\alpha'}(\mathbf{p}) \Pi_{\alpha'\sigma}(\omega, \mathbf{p}) U_{\alpha'\beta}(\omega, \mathbf{p}).$$
(9)

При этом поляризационный оператор $\Pi_{\alpha\sigma}(\omega, \mathbf{p})$ не зависит от сорта частиц и равен

$$\Pi(\omega, \mathbf{p}) = \frac{T}{S} \sum_{\mathbf{k}\varepsilon} G_{\alpha\sigma} \left(\varepsilon + \omega, \mathbf{p} + \mathbf{k}\right) G_{\alpha\sigma} \left(\omega, \mathbf{k}\right). \quad (10)$$

В случае $lp \gg 1$ взаимодействием $V_{\rm eh}(p)$ можно пренебречь. Тогда решение уравнения (9) приобретает вид

$$U_{\alpha\alpha}(p,\omega) = U(p,\omega) = \frac{V(p)}{1 - \nu V(p) \Pi(p,\omega)}.$$
 (11)

Если же $lp \ll 1$, то взаимодействие $V_{\rm eh}(p) \approx -V(p)$. В этом случае решение уравнения (9) получается из решения (11) заменой поляризационного оператора на удвоенный: $\Pi(p,\omega) \to 2\Pi(p,\omega)$.

Вклад прямого кулоновского взаимодействия (5) вычисляется точно:

$$\Sigma_{\alpha,\sigma}^{(c)} = 2\pi ln, \qquad (12)$$

поскольку $\sum_{\mathbf{k}\omega\sigma'} G_{\alpha'\sigma'}(\omega, \mathbf{k}) = n \operatorname{u} \sum_{\alpha'} V_{\alpha\alpha'}(0) = 2\pi l.$ Вычисление обменного вклада $\Sigma_{\alpha,\sigma}^{(\mathrm{ex})}(\varepsilon, \mathbf{p})$ тоже легко проводится и дает величину

$$\Sigma_{\alpha,\sigma}^{(\mathrm{ex})}(\mathbf{p}) = -\int \frac{d^2k}{(2\pi)^2} V(\mathbf{k}) n(\mathbf{p} - \mathbf{k}) \sim p_F \sim -\left(\frac{n}{\nu}\right)^{1/2}.$$
(13)

В дальнейшем будет показано, что этим членом можно пренебречь по параметру $1/\nu$ как в случае l > 1, так и в случае l < 1.

Для того чтобы вычислить химический потенциал частиц как функцию концентрации n, найдем собственно-энергетическую часть $\Sigma(0, p_F)$, используя самосогласованную систему уравнений (4)– (7). Химический потенциал связан с собственноэнергетической частью $\Sigma(0, p_F)$ и импульсом Ферми p_F известным соотношением:

$$\mu - \Sigma_{\alpha,\sigma}(0, p_{\rm F}) = p_{\rm F}^2/2.$$
(14)

В выражении (7) для собственно-энергетической части $\Sigma_{\alpha\sigma}^{(\mathrm{cor})}(\varepsilon,\mathbf{p})$ в случае $l \gg 1$ перенормированное взаимодействие $U_{\alpha\alpha}(\mathbf{k},\omega)$ имеет вид (11). Как было указано выше, в случае $l \ll 1$ в выражении (11) поляризационный оператор заменяется на удвоенный. В обоих случаях главный вклад в интеграл для корреляционной составляющей собственно-энергетической части $\Sigma_{\alpha\sigma}^{(\mathrm{cor})}(\varepsilon, \mathbf{p})$ дают импульсы $k \sim k_0 \gg p_{\mathrm{F}}$ и частоты $\omega \sim \omega_0 \gg \varepsilon_{\rm F}$, что связано с малостью импульса Φ ерми $p_{\rm F} \sim (n/\nu)^{1/2}$ из-за фактора $1/\nu$. Эти импульсы и частоты оказываются порядка $k \sim k_0 \sim n^{1/3}$ и $\omega \sim \omega_0 \sim n^{2/3}$, что будет показано в дальнейшем. В связи с тем что импульсы, дающие главный вклад в интеграл (7) для $\Sigma_{\alpha\sigma}^{(\text{cor})}(\varepsilon, \mathbf{p})$, велики по сравнению с импульсом Ферми ($k_0 \gg p_{\rm F}$), перенормированное взаимодействие $U_{\alpha\alpha}(k,\omega)$ (11) определяется асимптотикой поляризационного оператора при большой передаче импульса $(k \gg p_{\rm F})$:

$$\Pi_0(k,\omega) \approx -\frac{1}{\nu} \frac{nk^2}{\omega^2 + (k^2/2)^2}.$$
 (15)

В этом случае перенормированное взаимодействие (11) при $l \gg 1$ имеет вид

$$U(\mathbf{k},\omega) = \frac{2\pi/k}{1 + (2\pi/k)\{nk^2/[\omega^2 + (k^2/2)^2]\}}.$$
 (16)

В случа
е $l \ll 1$ оно получается из (16) заменой плотност
иnна удвоенную: $n \to 2n.$

Вычисление корреляционного вклада $\Sigma_{\alpha\sigma}^{(\text{cor})}(\varepsilon, \mathbf{p})$ (7) в собственно-энергетическую часть для внешних импульсов и частот $|\mathbf{p}| \ll k_0$ и $\varepsilon \ll \varepsilon_0$ дает величину, не зависящую от ε и **p**. Как нетрудно убедиться, в случае $l \gg 1$ оно приводит к интегралу

Письма в ЖЭТФ том 97 вып. 11-12 2013

$$\Sigma_{\alpha\sigma}^{(\text{cor})} = -\int \frac{d\omega d^2 k}{(2\pi)^3} \frac{V^2(\mathbf{k})\Pi_0(\mathbf{k},\omega)}{1 - V(\mathbf{k}\Pi_0(\mathbf{k},\omega))} \times G_{\alpha\sigma}(\varepsilon + \omega, \mathbf{p} + \mathbf{k}) =$$
$$= -\frac{2\pi}{(2\pi)^3} \int d\omega \int_0^\infty k dk \frac{\left(\frac{2\pi}{k}\right)^2 n \left(\frac{k^2}{\omega^2 + (k^2/2)^2}\right)^2}{1 + \frac{2\pi}{k} \frac{nk^2}{\omega^2 + (k^2/2)^2}} \approx \\\approx -Cn^{1/3}.$$
(17)

В случае $l \ll 1$ корреляционная поправка получается из (17) заменой плотности $n \to 2n$, что фактически означает замену константы $C \to 2^{1/3}C$.

Главный вклад в интеграл (17), как мы и предполагали, воспользовавшись асимптотикой поляризационного оператора для больших импульсов, вносят импульсы $k \sim k_0 \sim n^{1/3}$ и частоты $\omega \sim \omega_0 \sim n^{2/3}$. Для оценки последнего интеграла можно ввести новые переменные, $\omega/n^{2/3}$ и $k/n^{1/3}$. После этого подынтегральное выражение перестает зависеть от n и полученный интеграл в новых переменных дает константу порядка единицы. Численная оценка константы пропорциональности C в выражении (17) дает величину $C \approx 2.528$.

Обменным вкладом (13) в собственноэнергетическую часть можно пренебречь по сравнению с корреляционным вкладом, если $n \ll \nu^3$, что и предполагается в дальнейшем. Подставляя полученные для собственно-энергетической части выражения в (14), получим выражение для химического потенциала при $l \gg 1$:

$$\mu \approx \frac{2\pi n}{\nu} + 2\pi ln - Cn^{1/3},$$
 (18)

где первый член есть кинетическая энергия $\varepsilon_{\rm F}$, второй – поправка (12), связанная с прямым кулоновским взаимодействием, а последний корреляционная поправка (17). При $l \ll 1$ выражение для химического потенциала получается из (18) заменой $C_1 = 2^{1/3}C$.

3. Уравнение состояния. Используя выражение (18) для химического потенциала, можно получить выражение для энергии на один электрон (дырку):

$$\varepsilon(n) = \frac{\pi n}{\nu} + \pi ln - \frac{3}{4}Cn^{1/3}.$$
 (19)

Тогда давление сильно вырожденной электроннодырочной плазмы запишется в виде

$$P = 2[\mu(n) - \varepsilon(n)]n = \frac{2\pi n^2}{\nu} + 2\pi ln^2 - \frac{C}{2}n^{4/3}.$$
 (20)

Поскольку $\nu \gg 1$, в случае $l \gg 1$ можно пренебречь вкладом от кинетической энергии $\pi n^2/\nu$ по

Письма в ЖЭТФ том 97 вып. 11-12 2013

сравнению со вкладом прямого кулоновского взаимодействия $\pi l n^2$. Легко показать, что при плотностях $n < (C/6\pi l)^{3/2}$ сжимаемость $\partial P/\partial V > 0$ и система неустойчива. Для плотностей $n > (C/6\pi l)^{3/2}$ имеем $\partial P/\partial V < 0$, что означает устойчивость системы. Однако в интервале плотностей $(C/6\pi l)^{3/2} < n < (C/4\pi l)^{3/2}$ давление оказывается отрицательным. Наиболее энергетически выгодным является состояние, при котором энергия $\varepsilon(n)$ достигает минимального значения. Последнее определяется условием $d\varepsilon(n)/dn = 0$ (которое эквивалентно условию P = 0, см. (20)). Это равенство определяет плотность энергетически выгодной фазы n_{eq}

$$n_{\rm eq} = \left(C/4\pi l\right)^{3/2}.$$
 (21)

Энергия на одну частицу для этой плотности определяется выражением

$$\varepsilon_{\rm eq} = \varepsilon(n_{\rm eq}) = -\frac{C^{3/2}}{4\pi^{1/2}} \frac{1}{l^{1/2}}.$$
 (22)

При дальнейшем увеличении плотности система остается в однородном состоянии при давлении P > 0. Сравним энергию (22) с энергией $\varepsilon_{\rm ex}$, приходящейся на один экситон в системе взаимодействующих экситонов. Энергия связи изолированного экситона $\varepsilon_{\rm ex}^0 \sim -1/l$ при $l \gg 1$. Поскольку экситоны в ДКЯ отталкиваются, $\varepsilon_{\rm ex} > \varepsilon_{\rm ex}^0 \sim -1/l$. Сравнивая эту оценку с выражением (22), приходим к выводу, что основное состояние электронно-дырочной жидкости, отвечающее плотности (21), оказывается энергетически выгоднее экситонного, если $l \gg 1$, причем радиус экситона $R_{\rm ex} \sim l^{3/4}$ [2]. Следовательно, в этом случае при плотности зарядов $n = n_{\rm eq}$ (см. (21)) имеем $n_{eq}R_{\rm ex}^2 \sim 1$. При таких плотностях система не может рассматриваться как газ экситонов. Она является электронно-дырочной жидкостью.

В случае $l \gg 1$ при нахождении уравнения состояния системы мы пренебрегли кинетической энергией $2\pi n/\nu$ в уравнении (18). Обратимся к противоположному случаю, $l \ll 1$. В таком случае кинетической энергией пренебрегать нельзя. Теперь плотность электронно-дырочной жидкости (равновесного однородного состояния при P = 0) зависит от величины параметра νl и определяется выражением

$$n_{\rm eq} \sim \left(\frac{\nu}{1+\nu l}\right)^{3/2}.$$
 (23)

Для этой плотности энергия на одну частицу

$$\varepsilon_{\rm eq} \sim -\left(\frac{\nu}{1+\nu l}\right)^{1/2}.$$
 (24)

Энергия $\varepsilon_{\rm eq}$ отрицательна, а ее модуль велик, $|\varepsilon_{eq}| \gg$ 1. В то же время при $l \ll 1$ энергия связи экситона $|\varepsilon_{\rm ex}| = 1$. Сравнивая $\varepsilon_{\rm ex}$ и $\varepsilon_{\rm eq}$, видим, что $|\varepsilon_{\rm eq}| \gg$ $|\varepsilon_{ex}|$ при $l \ll 1$. Таким образом, и в этом случае электронно-дырочная жидкость обладает меньшей энергией на частицу, чем экситонное состояние. Кроме того, при $l \ll 1$ экситонный радиус $R_{\rm ex} \sim 1$ превышает среднее расстояние между частицами $n_{\rm eq}^{-1/2}$, отвечающее плотности (23). В результате $n_{\rm eq}R_{\rm ex}^2 \gg 1$ и система представляет собой электронно-дырочную жидкость.

В промежуточном случае $l \sim 1$ и $\varepsilon_{\rm eq} \sim \varepsilon_{\rm ex} \sim -1$, т.е. электронно-дырочная жидкость и экситонная фаза обладают одинаковой по порядку величины энергией. Однако в этом случае $n_{\rm eq}^{-1/2} \sim R_{\rm ex} \sim 1$ и среднее расстояние между экситонами по порядку величины равняется экситонному радиусу. Поэтому концепция экситона теряет смысл. Таким образом, при любом соотношении между межплоскостным расстоянием l и боровским радиусом $a_{\rm B}$ электроннодырочная жидкость обладает меньшей энергией по сравнению с экситонным состоянием.

Интересно отметить, что если $l\nu \gg 1$, то кинетическая энергия, по порядку величины равная $\varepsilon_{\rm F} \sim \nu^{-1}$, не играет роли при установлении равновесного состояния. Электронно-дырочная жидкость при этом образуется в результате балланса между положительной "энергией конденсатора" (12) и внутрислоевой отрицательной корреляционной энергией (17). В данном случае как энергия основного состояния ε_{eq} , так и равновесная концентрация n_{eq} не зависят от параметра ν . Последнее имеет место, несмотря на тот факт, что формально результат получен при $\nu \gg 1$. Это позволяет ожидать справедливости полученных результатов, по крайней мере качественно, и при $\nu \sim 1$. Однако подобный вывод может быть подтвержден только численными расчетами.

4. Обсуждение результатов. Итак в данной работе рассмотрена многокомпонентная ($\nu \gg 1$), двумерная электронно-дырочная плазма с пространственным разделением зарядов. Показано, что независимо от расстояния l между слоями электроннодырочная жидкость обладает меньшей энергией на одну частицу, чем экситонный газ. В случае $l \gg 1$ согласно уравнению (19) вкладом кинетической энергии в химический потенциал можно пренебречь. Тогда энергия электронно-дырочной системы складывается из двух частей. Первый вклад равен πln^2 . Он связан как с внутрислоевым e-e и h-h прямым кулоновским взаимодействием, так и с межслоевым e-h кулоновским взаимодействием. Электрон-

электронный и дырочно-дырочный вклады положительны и расходятся. Электрон-дырочный вклад отрицателен и также расходится. Вследствие электронейтральности эти три члена дают конечное значение πln^2 . Второй вклад есть отрицательная корреляционная энергия $-\frac{3}{4}Cn^{4/3}$. Заметим, что в случае $l \gg$ 1 она связана только с e-e- и h-h-взаимодействием. Эта энергия отрицательна, несмотря на то что внутри слоя частицы отталкиваются. Аналогичное обстоятельство имеет место в случае трехмерного электронного газа на однородном положительном фоне [7, 17].

Обратимся теперь к возможной связи между полученными результатами и результатами ряда экспериментов, в которых наблюдаются фрагментированные люминесцирующие области в ДКЯ [8-16]. Наличие таких областей иногда рассматривают как проявление бозе-конденсации экситонов. В работах [18, 19] люминесцирующие фрагменты ассоциируются с экситонной жидкостью, в которой экситоны рассматриваются как бозе-частицы, испытывающие эффективное притяжение на малых расстояниях. В реальных экспериментах фрагментация наблюдается, если $n_{\rm ex}R_{\rm ex}^2 \sim 1$. В этом случае проявление экситонных корреляций вблизи поверхности Ферми в некоторых работах интерпретируют как наличие экситонов, являющихся бозе-частицами. Однако по нашему мнению, люминесцирующие фрагменты не связаны с экситонами, а являются двумерными (2D) электроннодырочными каплями, в которых на поверхности Ферми могут иметь место сильные электронно-дырочные корреляции экситонного типа [20].

В упомянутых экспериментах электронно-дырочная плазма в ДКЯ создается внешним оптическим источником. Если средняя плотность зарядов в созданной плазме меньше, чем $n_{\rm eq}$, то однородное состояние системы неустойчиво и возникают нейтральные 2D электронно-дырочные капли. Положительный заряд последних сосредоточен в одном слое, а отрицательный – в другом. При этом плотность зарядов каждого знака есть $n_{\rm eq}$, а заряженные области расположены одна над другой.

Оценим характерный радиус капли R. Для этого учтем, что время жизни τ пространственно разделенных электронов и дырок конечно. Тогда уменьшение полного заряда одного знака в капле (при сохранении нейтральности) есть $-\pi R^2 n_{\rm eq}/\tau$. С другой стороны, вне капель имеется поток экситонов j, непрерывно рождаемый внешним оптическим источником. Этот поток, попадая вовнутрь 2D-капли, увеличивает заряд в каждом слое на величину $+2\pi Rj$. В состоянии динамического равновесия гибель и приход зарядов в капле компенсируют друг друга, приводя к зависимости

$$R \approx 2j\tau/n_{\rm eq}$$

Очевидно, что понятие электронно-дырочной капли теряет смысл, если ее радиус $R < a_B = 1$. По этой причине существует минимальное пороговое значение потока

$$j > j_c = \frac{n_{\rm eq} a_{\rm B}}{2\tau},\tag{25}$$

приводящего к образованию капли. Из уравнения (25) следует, что электронно-дырочные капли образуются, если поток j превышает некоторую критическую величину j_c . Таким образом, если оптическая накачка слаба ($j < j_c$), то капля не успевает образоваться. Это коррелирует с упомянутыми экспериментами, в которых обнаружен минимальный порог накачки, при котором наблюдается фрагментация. Если накачка достаточно сильна, то рождается электронно-дырочная плазма с плотностью $n > n_{\rm eq}$. При этом капели не появляются, а устойчивое состояние системы является однородной электронно-дырочной жидкостью. Очевидно, что в данном случае давление P > 0 и для реализации такого состояния наличие стенок является необходимым.

В данной работе показано, что корреляционные эффекты обусловлены главным образом рассеянием в канале экранирования. Следует отметить, что в работе [21] исследовался другой тип электроннодырочной жидкости. В этой работе минимум энергии как функции концентрации *п* зарядов в ДКЯ найден посредством вариационной процедуры и связан с экситонными корреляциями в канале рассеяния электрон-дырка. В нашей работе рассмотрение этих корреляций отвечало бы учету диаграмм, малых по параметру $1/\nu$. Строго говоря, наши результаты обоснованы только в случае $\nu \gg 1$. В то же время результаты работы [21] фактически относятся к случаю $\nu = 2$. Поэтому формально сравнение наших результатов с работой [21] является некорректным. По нашему мнению, в работе [21] недооценивается роль рассмотренных нами корреляционных эффектов. Однако последовательный учет корреляций в канале рассеяния электрон-дырка на фоне рассеяния в канале экранирования при $\nu = 2$ может быть проведен только численно, что выходит за рамки данной работы. В то же время именно корреляции в канале рассеяния электрон-дырка ответственны за появление аномальных средних экситонного типа, приводящих к возникновению диэлектрической щели на поверхности Ферми [20].

Авторы благодарят Ю. Кагана и Ю.Е. Лозовика за обсуждение результатов работы. Работа выполнена при поддержке Российского фонда фундаментальных исследований и Министерства образования и науки Российской Федерации (проект 8364).

- K. Das Gupta, A.F. Croxall, J. Waldie et al., Adv. Cond. Matt. Phys. 2011, 727958.
- Yu. E. Lozovik and V.I. Yudson, ZhETF **71**, 738 (1976) [Sov. Phys. JETP **44**, 389 (1976)].
- Y. N. Joglekar, A. V. Balatsky, and S. Das Sarma, Phys. Rev. B 74, 233302 (2006).
- E. A. Andrushin, V. S. Babichenko, L. V. Keldysh et al., JETPh Lett. 24, 210 (1976).
- L.V. Keldysh, Electron-Hole liquid in Semiconductors, In: Morden Problems of Condense Matter Science (ed. by C.D. Jeffries and L.V. Keldysh), North Holland, Amsterdam, 1987, v.6.
- L. V. Keldysh, Excitones in Semiconductors, Nauka, M., 1971.
- 7. T. M. Rice, Solid State Phys. 32, 1 (1977).
- L. V. Butov, A. C. Gossard, and D. S. Chemla, Nature (London) 418, 751 (2002).
- D. Snoke, S. Denev, Y. Liu et al., Nature (London) 418, 754 (2002).
- 10. L.V. Butov, Solid State Commun. 127, 89 (2003).
- D. Snoke, Y. Liu, S. Denev et al., Solid State Commun. 127, 187 (2003).
- L. V. Butov, L.S. Levitov, A.V. Mintsev et al., Phys. Rev. Lett. 92, 117404 (2004).
- A. V. Larionov, V. B. Timofeev, P. A. Ni et al., Pis'ma v ZhETF **75**, 233 (2002) [JETP Lett. **75**, 570 (2002)].
- A. A. Dremin, A. V. Larionov, and V. B. Timofeev, Fiz. Tverd. Tela (St. Peterburg) 46, 168 (2004) [Solid. State. Phys. 46, 170 (2004)].
- V. B. Timofeev, Usp. Phys. Nauk **175**, 315 (2005) [Phys. Usp. **48**, 295 (2005)].
- L. S. Levitov, B. D. Simons, and L. V. Butov, Phys. Rev. Lett. 94, 176404 (2005).
- D. Pines and P. Nozieres, Quantum theory of liquids, N.Y., 1973.
- A. A. Chernuk and V. I. Sugakov, Phys. Rev. B 74, 085303 (2006).
- 19. V.I. Sugakov, Phys. Rev. B 76, 115303 (2007).
- L.V. Keldysh, and Yu.V. Kopaev, Sov. Phys. Solid State 6, 2219 (1965).
- Yu. Lozovik and O.L. Berman, JETP Lett. 64, 573 (1996)]; JETP 84, 1027 (1997).