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Estimate of the cross section for thermal neutrons
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Cross section of the thermal neutrons in the framework of statistical approach to the complicated nuclei

is considered. We calculate probability distribution P(z) to have given cross section σ (determined by fluctu-

ations of resonance positions and widths). z is the ratio of σ to σ∗ where σ∗ is the cross section for the model

of equidistant resonances with same width. The last quantity can be presented in terms of neutron strength

function for given nuclei. Probability distribution P(z) is universal for all nuclei.

DOI: 10.7868/S0370274X13120047

1. Introduction. To plan experiments with neu-

trons one must beforehand know their interaction cross

sections with nuclei (at least by order of magnitude). In

the region of thermal energies the cross sections differ

by several orders of magnitude even for nearby nuclei.

Therefore they cannot be predicted exactly. The reason

for this lies first of all in the different strength func-

tions of different nuclei. However, the main difference

comes from fluctuations of the positions and widths of

the resonances closest to the zero energy of the incoming

neutron. For complicated nuclei number of resonances

is very large and their parameters can be considered as

random quantities.

A statistical approach to the estimate of thermal

cross sections has been first proposed by I.I. Gurevich

in 1939 [1]. The random fluctuations of the resonance

parameters were taken into account by introducing a

universal distribution P(z) for the cross sections of ther-

mal neutrons. The variable z = σr/σ
∗
r is the ratio of the

true reaction cross section σr to the expected one, σ∗
r ,

which is calculated individually for each nucleon from

its mean resonance parameters. σ∗
r is supposed to be a

smooth function from one nucleus to another.

In Ref. [2, 3] the expected cross section of the neu-

tron capture ((n, γ) reaction) was expressed in terms of

the strength functions in the following way (for s neu-

trons, the neutron strength function S0 and the radia-

tive strength function Sγ):

σ∗

γ =
π3

k20

(
A+ 1

A

)2 √
E0

Eth
S0Sγ =

= 0.40 · 108
(
A+ 1

A

)2

S0Sγ , barn. (1)

Here A is the atomic mass of the target nucleus, k0 is

momentum of neutrons with energy E0 = 1 eV, Eth =

= 0.0253 eV is the thermal energy. In deriving Eq. (1) it

was assumed that the resonances are equidistant, their

reduced widths are equal, and the zero neutron energy

divides the interval between the resonances of positive

and negative energy by half (fence model).

Cross section distribution. If the resonance parame-

ters did not fluctuate, the thermal cross section distri-

bution would be described by a delta function Pγ(z) =

= δ(z − 1) and the capture cross section could be de-

duced from Eq. (1). As a result of the fluctuations, the

delta function is smeared out and forms a wide distri-

bution Pγ(z) [2–6]. The probability Pγ(z) should take

into account of the equiprobable position of the zero

neutron energy between two resonances, the distribu-

tion of neutron widths according to Porter and Thomas,

and the distance between neighboring levels according

to Wigner distribution.

For large z, the leading term in the probability

Pγ(z), with account of all distributions is of the fol-

lowing form (compare with [6]):

Pγ(z) =
1

πz3/2

〈√
Γn0

Γn0

〉

PT

〈
D0

D0

〉

W

=
1√
2πz3

(2)

(z ≫ 1). We used here

〈√
Γn0/Γn0

〉

PT

=
√
2/π and

〈
D0/D0

〉
W

= π/2.

For small z ≪ 1, without taking account of the

Wigner distribution, the following formula was ob-

tained [2]:

Pγ(z) = (2/πz)3/2e−1/2z. (3)

The account of the fluctuations of the distances between

the resonances changes this behavior strongly (see be-

low, Eq. (30)).

The complete theoretical distribution Pγ(z) was ob-

tained modeling cross sections on the computer by the

Monte Carlo method (see Fig. 1). We derived also in-
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Fig. 1. Monte Carlo evaluation of the Pγ(z) distribution

(108 hypothetical nuclei; z = σ/σ∗). Dashed and dashed-

dotted line are asymptotic at large and small z given by

(18) and (30) correspondingly

tegral equation for Pγ(z) which can be used to obtain

asymptotic of the distribution.

It can be seen from Fig. 1 that fluctuations of the

neutron resonance positions and parameters, predicted

by the statistical model, lead to a broad distribution of

the neutron capture cross sections Pγ(z). The distribu-

tion Pγ(z) together with both asymptotic can be used

for a quantitative estimate of the probability for an un-

known thermal cross section to lie within given limits.

The similar approach could be used also for other re-

actions with neutrons. One has to distinguish two cases

depending on fluctuations of the exit width [2]. In the

statistical approach fluctuations of the reduced widths is

described by χ2(ν) where ν is the number of decay chan-

nels. If this number is large (capture cross section, total

cross section) this distribution reduces to δ-function, i.e.

exit width does not fluctuate. In the other limiting case

the final state is unique and exit widths are distributed

according to Porter–Thomas (i.e. in the same manner as

entrance width). Examples are (n, α) and INNA (neu-

tron acceleration [6, 7]) reactions. We consider mainly

the first case but the generalization is straightforward

and we compare at the end both cases (see Fig. 2).

2. Neutron cross section as the random quan-

tity. It is well-known that in the complicated nuclei the

system of levels is essentially random ensemble. The dis-

tance between levels is distributed according to Wigner:

PW(ε) =
π

2
ε exp

(
−π

4
ε2
)

(4)

while widths of resonances follow so-called Porter–

Thomas distribution:

PPT(t) =
1√
2πt

e−t/2. (5)

Fig. 2. Distributions P(z) (dashed curve) and P ′(z) (solid

curve) for the cases when one or both widths are fluctuat-

ing according to Porter–Thomas (108 hypothetical nuclei;

103 positive and 103 negative resonances)

According to the standard picture the thermal neutron

interacting with A-nuclei forms a compound A+1-nuclei

in the excited state with the energy of the excitation

equal to the binding energy of the neutron. This energy

falls almost randomly in the lattice of energy levels for

the compound. Cross section of the process is described

by Breit–Wigner formula:

z =
∑

i

ti
π2(E − Ei)2

. (6)

Here ti are widths of the resonances and Ei are their

energies. We neglect here the width in the denominator

as it is usually much smaller than a distance between

levels.

The number of resonances in the complex nuclei is

very large, it is a good approximation to consider this

number to be infinite. Let us divide all resonances into

two groups: positive (located to the right to the energy

of the neutron) and negative ones. Let us denote by ε

the distance between two closest to the neutron energy

resonances and choose the scale of the energy in such a

way that the energy of the neutron is zero. In this scale

the energy of the closest to the neutron energy positive

resonance is εx and the energy of the negative one is

−ε(1 − x), where x is a random quantity with a flat

distribution in the interval 0 < x < 1.

We denote energies of the positive resonances next

to the closest ones as ε+1 < ε+2 < . . ., energies of the

negative ones as −ε−1 > −ε−2 > . . .. In this notation the

Breit–Wigner formula Eq. (6) is divided into the contri-

bution of positive and negative resonances:
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z = z+ + z−,

z+ =
t+

π2ε2x2
+

∞∑

i=1

t+i

π2
(
ε+i

)2 ,

z− =
t−

π2ε2(1− x)2
+

∞∑

i=1

t−i
π2(ε−i )

2
. (7)

Clearly two contributions can be obtained from each

other by x ↔ 1− x exchange.

The cross section Eq. (7) is a random quantity with

t±i distributed according to Eq. (5), distances between

resonances εi−ε±i−1 distributed according to Eq. (4) and

flat distribution in x. We would like to find a distribution

P(z) which gives the probability to find the cross-section

z in such a system. It is given by infinite-dimensional in-

tegral:

P(z) =

∫ 1

0

dx

∫ ∞

0

dε dt+ dt−PPT(t
+)PPT(t

−)PW(ε)×

×
∞∏

i=1

[∫ ∞

0

dε+i dt
+
i PW(ε+i − ε+i−1)PPT(t

+
i )

]
×

×
∞∏

i=1

[∫ ∞

0

dε−i dt
−

i PW(ε−i − ε−i−1)PPT(t
−

i )

]
×

× δ[z − z+(x, ε+i , t
+
i )− z−(x, ε−i , t

−

i )] (8)

with z± determined by Eq. (7). It is implied in this equa-

tion that distribution PW(ε) = 0 if its argument ε is

negative. This corresponds to the ordering of the reso-

nances described above.

The infinite number of integrations in the Eq. (8)

makes a problem to be close in spirit to the problems of

quantum field theory in the functional integral approach

or to the problems of the statistical physics. In fact,

the closest analogy is the theory of disordered systems.

Fortunately, our problem appears to be rather simple

example of this type.

It is convenient to write down expression for the

Laplace transform P̃(α) of the distribution P(z).

P̃(α) =

∫ ∞

0

dz e−αzP(z) =

=

∫ 1

0

dx

∫ ∞

0

dεdt+dt−PW(ε)PPT(t+)PPT(t−)×

× exp

[
− αt+

π2ε2x2
− αt−

π2ε2(1− x)2

]
P(α, εx)P[α, ε(1− x)],

(9)

where P(α, εx) and P[α, ε(1− x)] are the contributions

of positive and negative resonances:

P(α, ε) =

∞∏

i=1

[∫
dtidεi PW(εi − εi−1)PPT(ti)e

−
αti

π2ε2

i

]

(10)

(at i = 0 the energy ε0 ≡ ε).

It is easy to perform averaging in the widths of the

resonances in Eq. (10):

S(α, ε) ≡
∫ ∞

0

dt PPT(t) exp

(
− αt

π2ε2

)
=

1√
1 +

2α

π2ε2

.

(11)

We introduce further a new function Φ(α, ε) =

= S(α, ε)P(α, ε) and rewrite Eq. (9) for the Laplace

transform of the distribution P(z) as the average in the

distance ε only:

P̃(α) =

∫ 1

0

dx

∫ ∞

0

dε PW(ε)Φ(α, εx)Φ[α, ε(1− x)]. (12)

Function Φ(α, ε) is obtained as a result of the subse-

quent integrations in the energies of the resonances; it

is clear that in the limit of the infinite number of reso-

nances it should obey the integral equation:

Φ(α, ε)

S(α, ε)
=

∫ ∞

ε

dε′ PW(ε′ − ε)Φ(α, ε′). (13)

Equations (11)–(13) are sufficient to find the Laplace

transform P̃(α) and hence the cross section distribution

P(z). If the exit width of the reaction fluctuates as well

and distributed according to Porter–Thomas (see Intro-

duction) one has to modify only function S to be:

S(α, ε) =

∫ ∞

0

dt1dt2PPT(t1)PPT(t2)e
−

αt1t2

π2ε2 =

=
y

2
√
π
ey

2/8K0

(
y2

8

)
, y =

πε√
α
. (14)

where K0 is modified Bessel function. Integral equa-

tion (13) as well as representation for distribution P(z)

Eq. (12) are valid also in this case. We will proceed,

however, with the situation when only entrance width

is fluctuating.

From the practical point of view direct numerical

simulations seem to be more simple task than solution

of integral Eq. (13), so we will use Monte Carlo method

to obtain exact P(z). However derived equations are

convenient to find analytical asymptotic of P(z) in the

regions of large and small z.

Asymptotic of large z. At large z ≫ 1 we have to

calculate P̃(α) at small α ≪ 1. At α = 0 the inte-

gral equation (13) has an obvious solution Φ(0, ε) = 1.

This corresponds also to the limit of large ε ≫ √
α, see

Eq. (11) for S(α, ε). However the main contribution to

small z asymptotics comes from the region ε ∼ √
α ≪ 1.

In this region the integral in r.h.s of Eq. (13) converges

owing to the Wigner dirstribution Pw(ε
′ − ε) and ε′ is
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of order of unity. Therefore we can neglect ε in the ar-

gument of Wigner distribution and obtain:

Φ(α, ε) = S(α, ε) +O(α,
√
ε),

√
α/ε ∼ 1. (15)

Substituting Eq. (15) into Eq. (12) we obtain for the

Laplace transform

P̃(α) =

∫ 1

0

dx

∫ ∞

0

dε PW(ε)S(α, εx)S[α, ε(1 − x)] =

=

∫ ∞

0

dε PW(ε)

∫ 1

0

dx√(
1 + 2α

π2ε2x2

) (
1 + 2α

π2ε2(1−x)2

) .

(16)

In fact, this is the expression for the distribution P̃(α)

in the approximation when only two closest resonances

are taken into account (after averaging in widths of res-

onances). This is, of course, to be expected as the large

cross section can appear only if the energy of the neu-

tron is close to the energy of the resonance. However,

next terms in the expansion of P̃(α) at small α require

to account for other resonances.

There are two regions in Eq. (16) x ≪ 1 and 1−x ≪
≪ 1 which contribute at small α. Calculating the inte-

grals we get:

P̃(α) = const − 2
√
2α

π

〈
1

ε

〉

W

+O(α) (17)

(const does not contribute to the back Laplace trans-

formation: at large z only singularities of P̃(α) matter).

The average with Wigner distribution is equal:

〈
ε−1

〉
W

=

∫
dε

ε
PW(ε) =

π

2
.

Making back Laplace transformation we get:

P(z) =
1√
2πz3

− 1

2πz2
+O(1/z5/2). (18)

We take into account also next term of expansion which

is the last one which can be calculated in the approxi-

mation of the closest resonances. Let us note that this

expression differs from the one obtained in Ref. [1–3].

Small z asymptotic. In the opposite case of small

z the main contribution comes from large α ≫ 1 and

ε ∼ 1. Let us look for the solution of the integral equa-

tion (13) in the form Φ(α, ε) = e−φ(α,ε) where:

φ(α, ε) =
√
αφ0(y) + φ1(y) +

1√
α
φ2(y) + . . . (19)

with y ≡ επ/
√
α. Thus function φ(α, ε) is large in the

main region but its derivatives are small. The integral

in Eq. (13) is determined by the region ε′−ε ∼ 1. Hence

we can expand function φ(α, ε′) near the point ε:

φ(α, ε′)− φ(α, ε) ≈ ∂φ(α, ε)

∂ε
τ +

1

2

∂2φ(α, ε)

∂ε2
τ2 + . . . =

= πτφ′(y) +
πτ√
α

[πτ
2
φ′′

0 (y) + φ′

1(y)
]
+O(1/α) (20)

(where τ = ε′ − ε). Let us plug this expression into

Eq. (13). In the leading order we get

√
1 +

2

y2
=

∫ ∞

0

dτ PW(τ)e−τπφ′

0
(y) +O(1/

√
α). (21)

Integrating in τ in Eq. (21) we obtain the algebraic equa-

tion for the derivative φ′
0(y). Together with the bound-

ary condition φ0(y) = 0 at y → ∞ (i.e. Φ(α, ε) → 1

at ε → ∞) this equation allows to determine function

φ0(y) for all y.

Let us do this calculation for PW(τ) = δ(τ−1), i.e. in

the model of equidistant resonances. The corresponding

function φeqd
0 is

φeqd
0 (y) =

1

2π

∫ ∞

y

dy′ log

(
1 +

2

y′2

)
. (22)

We are interested in the function Φ(α, ε) in the region

α ≫ 1 and ε ∼ 1. For this purpose we need the function

φ(y) only at y = 0; it is equal to φeqd
0 (0) = 1/

√
2. Thus:

Φeqd = exp[−
√
α/2 +O(1)] (23)

and the back Laplace transform gives:

Peqd(z) = exp

{
− 1

2z
+O[log(z)]

}
, z ≪ 1. (24)

This result was already obtained in Ref. [1].

If one takes into account fluctuations of the distances

between resonances according to Wigner distributions

the value of φ0(0) can be found only by numeric solution

of Eq. (21). The answer is: φ0(0) = 0.59617. We would

like to find also the next-to leading correction to Φ(α, ε).

For this purpose it is sufficient to know the terms which

are already written in the expansion Eq. (20). In the

next order in 1/
√
α Eq. (13) turns into

1√
α

∫ ∞

0

dτ PW(τ)

[
1

2
π2τ2φ′′

0(y) + πτφ′

1(y)

]
= 0. (25)

Hence

φ1(y) = −π

2

〈
ε2
〉
W〈

ε
〉
W

φ′

0(y) = −2φ′

0(y),

Φ(α, ε) ≈ exp
[
−
√
αφ0(y) + 2φ′

0(y)
]
. (26)
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This expression has accuracy O(1/
√
α).

Function φ0(y) is determined by Eq. (21) and we are

interested by its limit at y → 0. It can be seen that

the derivative φ′
0(y) is singular in this limit. Indeed, if

φ′
0(y) is large the integral in Eq. (21) can be calculated

by saddle point method and Eq. (21) takes a form:

2πφ′

0(y) exp{−π[φ′

0(y)]
2} = −

√
1 + 2/y2,

with the solution

φ′

0(y) = −

√√√√ log
(

1
πy2

)

2π




1−
1

2

log
[
log

(
1

πy2

])

log
(

1
πy2

) + . . .




 .

(27)

The further calculations are straightforward. By

means of Eq. (27) one can restore the function φ0(y)

at small y (we remind that φ0(0) is already known).

Substituting it into Eq. (26) we obtain Φ(α, ε) at small

α and ε ∼ 1 with required accuracy. Next, we have to

substitute it into Eq. (12) and integrate in ε and x in or-

der to obtain P̃(α). Integral in ε is calculated by saddle

point method, the saddle point being

ε̄ =

√
2

π
logα. (28)

Integral in x produces some constant. The last step is

to make back Laplace transformation. Again this can be

done by saddle point method with a saddle point for α

equal

ᾱ = φ0(0)
2/z2, z ≪ 1. (29)

We see now that y ∼ z
√
log(1/z) is indeed small at

small z. We already used this above.

Finally we obtain for the distribution P(z)

P(z)≈

≈ Iφ0(0)
2

√
z5 log

(
φ0(0)2

πz2

) exp

[
−φ0(0)

2

z
−
√

8

π
log

φ0(0)2

πz2

]
.

(30)

Here

I=

∫ 1

0

dx√
2π

exp[1−x logx−(1−x) log(1−x)] ≈ 1.0256.

(31)

Expression (30) has accuracy only O[1/ log(1/z)].

Thus we see that the probability to find a small

cross-section behaves in a rather non-trivial way. This

is due to the fact that small cross section can appear ei-

ther because of the small width or because of the large

distance to the resonance. These mechanisms compete

one with another. Behavior of the probability at small

z depends strongly on the concrete form of Wigner and

Porter–Thomas distributions.

Numerical simulations. Distribution P(z) can be

calculated at arbitrary z by means of computer simula-

tions. The simulations are fast and can have high accu-

racy. To simulate we take 1000 positive resonances and

1000 negative ones and calculate the Breit–Wigner cross

section for 108 hypothetical nuclei. The resulting curve

is plotted in the Fig. 1 together with the asymptotic of

large and small z. Distribution represents a broad curve

with a peak at z ≈ 0.28. The curve has a long tail, i.e.

probability to have a cross section σ much larger than

σ∗ decays slowly according to Eq. (18).

At the Fig. 2 we compare the cases when one or

two (entrance and exit widths) are fluctuating. The last

curve is more concentrated at small z, its peak shifted

to z ≈ 0.13. Still the probability to find a cross section

much larger than σ∗ remains significant. The asymptotic

of this curve at large z is described by

P ′(z) =
1

πz3/2
− 1

2πz2
+O(1/z5/2). (32)

The leading term comes here from
√
α in P̃(α). It differs

by the factor (2/π)1/2 which is the averaged 〈
√
Γexit〉PT.

The next term (it appears from α logα) has the same

coefficient as 〈Γexit〉PT = 1. This is in line with Eq. (14).
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