Полное внутреннее отражение на границе раздела вакуум–оптическая среда с квазинулевым показателем преломления

О. Н. Гадомский¹⁾, И. В. Гадомская, Е. Г. Зубков, А. А. Русин

Ульяновский государственный университет, 432017 Ульяновск, Россия

ООО "Солар Нано Композит", 432072 Ульяновск, Россия

Поступила в редакцию 22 марта 2013 г. После переработки 20 мая 2013 г.

Показано, что на поверхности оптической прозрачности среды с квазинулевым показателем преломления при различных углах падения внешнего излучения могут быть возбуждены поверхностные оптические волны, огибающие поверхность. Выведены формулы для амплитуд незеркального отражения и преломления световых волн на неоднородной границе раздела двух сред, позволяющие вычислять ее отражательную и пропускающую способности при различных углах падения и преломления.

DOI: 10.7868/S0370274X1313002X

В работе [1] нами сообщалось о синтезе новых композитных материалов на основе полимерной матрицы и наночастиц серебра, а также о некоторых экспериментальных результатах исследования этих материалов. Как было показано в [1] путем сравнения спектров пропускания слоев одинаковой толщины из полимерной матрицы и композитного материала, добавление наночастиц серебра увеличивает прозрачность полимера. Мы называем этот эффект эффектом усиленного оптического пропускания. В спектрах отражения слоев одинаковой толщины из полимерной матрицы и композитного материала обнаруживаются интерференционные максимумы. Их расположение показывает, что синтезируемые нами новые композитные материалы обладают квазинулевым показателем преломления в зависимости от весового содержания серебра. Кроме того, они обладают высокой прозрачностью в широкой области длин волн (по крайней мере от 450 до 1000 нм). Это означает, что их показатель поглощения значительно меньше квазинулевых значений показателя преломления и практически равен нулю. Так, по спектрам отражения и пропускания композитных слоев различной толщины были определены значения показателя преломления n = 0.36 и показателя поглощения $\kappa = 10^{-4}$.

Проблеме получения метаматериалов с нулевым и квазинулевым показателем преломления уделяется значительное внимание исследователей [2–4]. Это связано с широкими возможностями их применения в различных приборах и устройствах, например

Значительный интерес представляют теоретические и экспериментальные исследования оптических свойств новых композитных материалов с квазинулевым показателем преломления. Им и посвящена данная статья. Ниже будут получены формулы для амплитуд отражения и преломления света на однородной и неоднородной границах раздела вакуумоптическая среда с квазинулевым показателем преломления. Неоднородность границы раздела двух сред подразумевает возможность нарушения известного в классической оптике [6] закона преломления: $\sin \theta_1 = n \sin \theta_T$, где θ_1 – угол падения, θ_T – угол преломления. При этом граница раздела двух сред представляет собой идеальную плоскую поверхность. Неоднородность границы раздела двух сред является свойством, присущим исключительно композиту с квазинулевым показателем преломления.

Письма в ЖЭТФ том 98 вып. 1-2 2013

¹⁾e-mail: gadomsky@mail.ru

при конструировании усиливающих линз (enhanced lens), фотонных кристаллов из квантовых ям, покрытий для обеспечения оптической невидимости тел (проблема Invisible Cloak) и т.д. Однако в подобных исследованиях нулевые и квазинулевые показатели преломления достигаются лишь в узком диапазоне длин волн. В синтезируемых же нами композитных материалах квазинулевые показатели преломления достижимы в широком диапазоне длин волн, включающем весь видимый и ближний инфракрасный диапазоны. Способ синтеза композитных материалов с квазинулевым показателем преломления, а также получения толстых (от 10 до 100 мкм) слоев из этих материалов описан в патенте [5].

Как было показано в [1], близкие к нулю значения показателя преломления являются случайными величинами и находятся в области превышения точности определения показателя преломления. Согласно [7] систематическая погрешность в определении показателя преломления равна 1%. Она обусловлена тем, что в рамках концепции непрерывной среды не учитывается запаздывающее взаимодействие диполей внутри сферы Лорентца. Поэтому требуется пересмотр граничных условий, полученных в предположении резкой границы, когда показатели преломления сред представляются строго определенными величинами.

Будем исходить из теоремы погашения метода Эвальда–Озеена [6], которая представляется с помощью следующего уравнения:

$$\mathbf{A}_{0I} \exp\{ik_0 \mathbf{r}(\mathbf{s}_I - \mathbf{s})\} = \frac{\sin(\varphi + \theta_T)}{2\cos\varphi\sin\theta_T} [\mathbf{T}_0 - \mathbf{s}(\mathbf{s}T_0)], \ (1)$$

где $k_0 = \omega/c$, ω – частота внешнего излучения, c – скорость света в вакууме, **r** – радиус-вектор точки наблюдения, A_{0I} – амплитуда внешней волны, s_I – единичный вектор вдоль направления распространения внешней волны,

$$S_{xI} = -\sin\theta_I, \quad s_{yI} = 0, \quad S_{zI} = -\cos\theta_I, \qquad (2)$$

 θ_I – угол падения,
в
 — единичный вектор с компонентами

$$S_x = -\sin\varphi, \quad S_y = 0, \quad S_z = -\cos\varphi,$$
 (3)

 φ — угол, определяемый с помощью равенства $n\sin\theta_T = \sin\varphi, \ \theta_T$ — угол преломления, \mathbf{T}_0 — амплитуда преломленной волны.

Теорема погашения (1) была доказана с помощью интегро-дифференциального уравнения распространения электромагнитных волн [6] для произвольных значений и знака показателя преломления среды.

Обозначим через A_{\perp} и A_{\parallel} амплитуды электрического вектора внешней волны, а через T_{\perp} и T_{\parallel} – амплитуды преломленной волны, соответствующие *s*- и *p*-поляризованным волнам. В результате вычислений из (1) получим следующие формулы:

$$T_{\perp} = \frac{2\cos\varphi\sin\theta_T}{\sin(\varphi + \theta_T)} A_{\perp} b_0, \qquad (4a)$$

$$T_{\parallel}^{(1)} = \frac{2\cos\varphi\sin\theta_T\sin\theta_I}{\sin(\varphi + \theta_T)\cos(\varphi - \theta_T)\sin\varphi}A_{\parallel}b_0, \qquad (46)$$

$$T_{\parallel}^{(2)} = \frac{2\cos\varphi\sin\theta_T\cos\theta_I}{\sin(\varphi+\theta_T)\cos(\varphi-\theta_T)\cos\varphi}A_{\parallel}b_0, \qquad (4B)$$

где $b_0 = \exp\{ik_0\mathbf{r}(\mathbf{s}_I - \mathbf{s})\}.$

В соответствии с этими формулами в случае нарушения условий однородности границы раздела двух сред:

$$\mathbf{s}_I = \mathbf{s}, \ \varphi = \theta_I, \ n \sin \theta_T = \sin \theta_I,$$
 (5)

имеем две *p*-поляризованные преломленные волны с разными амплитудами. Для однородной границы раздела двух сред формулы (4) совпадают с формулами Френеля [6] и вместо двух *p*-поляризованных волн имеем одну преломленную *p*-поляризованную волну.

Формулы для амплитуд R_{\perp} и R_{\parallel} отраженных на неоднородной границе раздела двух сред *s*- и *p*поляризованных волн имеют следующий вид:

$$R_{\perp} = -\frac{\sin(\varphi - \theta_T)}{\sin(\varphi + \theta_T)} A_{\perp} b_0, \qquad (6a)$$

$$R_{\parallel}^{(1)} = \frac{\sin(\varphi - \theta_T)\cos(\theta_R - \theta_T)\sin\theta_I}{\sin(\varphi + \theta_T)\cos(\varphi - \theta_T)\sin\varphi} A_{\perp} b_0, \quad (66)$$

$$R_{\parallel}^{(2)} = \frac{\sin(\varphi - \theta_T)\cos(\theta_R - \theta_T)\cos\theta_I}{\sin(\varphi + \theta_T)\cos(\varphi - \theta_T)\cos\varphi} A_{\perp}b_0, \quad (6c)$$

где $\theta_R = \pi - \varphi$ – угол отражения. При выполнении условий однородности границы раздела двух сред (5) формулы (6) переходят в формулы Френеля [6].

На рис. 1 представлена зависимость отражательной способности неоднородной границы раздела

Рис. 1. Отражательная способность границы раздела вакуум-композит с показателем преломления n = 0.36 $R_s = |R_{\perp}|^2$, где R_{\perp} определяется формулой (6а) для неоднородной границы раздела двух сред, $\sin \varphi =$ $= n \sin \theta_T$, θ_T – угол преломления

вакуум-композит от угла преломления при произвольных углах падения в случае *s*-поляризации. На рис. 2 приведена отражательная способность этой

Письма в ЖЭТФ том 98 вып. 1-2 2013

Рис. 2. Отражательная способность границы раздела вакуум-композит с показателем преломления n=0.36 $R_p^{(2)}=|R_{\parallel}^{(2)}|^2$, где $R_{\parallel}^{(2)}$ определяется формулой (6в)

же границы в случае *р*-поляризованных волн. Как видно из рис. 2, при стремлении угла преломления к 90°, а угла падения – к нулю отражение света резко возрастает. При этом угол отражения света $\theta_R = 159^\circ$, а угол $\varphi = 21^\circ$ при n = 0.36. При $\varphi = 21^\circ$ и $\theta_T = 90^\circ$ отражательная способность $R_p^{(1)} = |R_{\parallel}^{(1)}|^2$ равна нулю. Таким образом, на неоднородной границе раздела вакуум-композит с квазинулевым показателем преломления формируется поверхностная волна, распространяющаяся внутри композита вдоль поверхности раздела, а в вакууме волна распространяется под углом $\theta_R = 159^\circ$. На рис. 3 представлена пропускательная способность рассматриваемой границы раздела двух сред. Видно, что при $\theta_T \approx 90^\circ$ волна практически не входит в композит.

Соотношение между углами преломления и падения определяет степень неоднородности границы раздела вакуум-композит с квазинулевым показателем преломления. По-видимому, это соотношение должно определяться экспериментально. Рассмотрим случай однородной границы, когда выполняются условия однородности (5). Покажем, что в этом случае можно наблюдать эффект полного внутреннего отражения, а роль менее плотной по сравнению с вакуумом среды выполняет оптическая среда с квазинулевым показателем преломления. Определим из соотношений (5) критическое значение угла падения $\bar{\theta}_I$ с помощью равенства

$$\sin\bar{\theta}_I = n,\tag{7}$$

Письма в ЖЭТФ том 98 вып. 1-2 2013

Рис. 3. Пропускательная способность границы раздела сред вакуум-композит с показателем преломления $n = 0.36 T_p^{(2)} = \frac{n \cos \theta_T}{\cos \theta_I} |T_{\parallel}^{(2)}|^2$

где n – показатель преломления композита. Если $\theta_I = \bar{\theta}_I$, то $\sin \theta_T = 1$, т.е. угол преломления $\theta_T = 90^\circ$. Поэтому направление распространения света будет касательно к поверхности раздела двух сред, а угол отражения света $\bar{\theta}_R = \pi - \bar{\theta}_I$, т.е. окажется близок к 180°. Если угол падения превышает критическое значение $\bar{\theta}_I$, то угол преломления становится мнимой величиной:

$$\sin \theta_T = \sin \theta_I / n, \ \cos \theta_T = -i \sqrt{\sin^2 \theta_I / n^2 - 1}.$$
 (8)

Знак перед корнем (8) выбран отрицательным, что соответствует быстрому затуханию поверхностной волны по мере удаления точки наблюдения от границы раздела сред. Таким образом, весь падающий свет отражается в вакуум, что соответствует эффекту полного внутреннего отражения. Комплексность угла преломления означает, что направление затухания совпадает с нормалью к поверхности, а направление распространения света определяется действительной частью угла преломления и зависит от угла падения света. На рис. 4 представлены зависимости отражательных способностей R_s и R_p от угла падения θ_I . При этом значния

$$R_{p} = \left| \frac{n^{2} \cos \theta_{I} - i\sqrt{\sin^{2} \theta_{I} - n^{2}}}{n^{2} \cos \theta_{I} + i\sqrt{\sin^{2} \theta_{I} - n^{2}}} \right|^{2},$$

$$R_{s} = \left| \frac{\cos \theta_{I} - i\sqrt{\sin^{2} \theta_{I} - n^{2}}}{\cos \theta_{I} + i\sqrt{\sin^{2} \theta_{I} - n^{2}}} \right|^{2}$$
(9)

Рис. 4. Отражательные способности однородной границы раздела вакуум-композит с квазинулевым показателем преломления в зависимости от угла падения света

вычислены с помощью формул (4), (6) при $\varphi = \theta_I$ для углов падения $\theta_I \geq \overline{\theta}_I$. Очевидно, что при $\theta_I \geq \overline{\theta}_I$, имеем $R_p = R_s = 1$ независимо от углов падения. При этом $T_p = T_s = 0$ при углах падения θ_I , больших критического угла. Для малых углов падения, таких, что $\sin \theta_I < n$, угол преломления является действительной величиной и величины R_p , R_s вычисляются с помощью формул (4), (6) при $\varphi = \theta_I$:

$$R_{p} = \left| \frac{\sqrt{1 - \sin^{2} \theta_{T}} - n \cos \theta_{I}}{\sqrt{1 - \sin^{2} \theta_{T}} + n \cos \theta_{I}} \right|^{2},$$

$$R_{s} = \left| \frac{\cos \theta_{I} - n \sqrt{1 - \sin^{2} \theta_{T}}}{\cos \theta_{I} + n \sqrt{1 - \sin^{2} \theta_{T}}} \right|^{2},$$
(10)

где $\sin \theta_T = \sin \theta_I / n$. Как видно из формул (10), в области малых углов падения величины R_p и R_s малы. Однако если предположить, что в области малых углов падения граница раздела вакуум-композит с квазинулевым показателем преломления является неоднородной, то согласно рис. З отражательная способность границы оказывается близкой к единице. На рис. 4 эта ситуация изображена штриховой линией.

Таким образом, в данной статье показано, что на границе раздела вакуум-оптическая среда с квазинулевым показателем преломления возможно возбуждение поверхностных электромагнитных волн, огибающих поверхность раздела. При этом для возбуждения таких волн не требуется применения каких-либо устройств, которые используются для возбуждения поверхностных волн, например, на поверхности металлов [8]. В полученных с помощью теоремы погашения формулах для амплитуд отражения и преломления границы раздела двух сред *n* представляет собой область допустимых значений показателя преломления вблизи нуля, включая его нулевое значение. Поскольку в пределах этой области значений показатель преломления является случайной величиной, экспериментальные значения амплитуд отражения и преломления света должны быть усреднены с помощью соответствующей функции распределения вероятностей. В [1] амплитуды отражения и пропускания слоя с квазинулевым показателем преломления представлялись как волновые пакеты классических амплитуд отражения и пропускания слоя с фиксированными значениями показателей преломления в пределах области допустимых значений. При этом предполагалось, что френелевские коэффициенты не зависят от изменения показателя преломления и вся зависимость от *n* содержится в экспоненциальных множителях. Такой способ усреднения позволил получить компактные формулы для амплитуд отражения и пропускания слоя с квазинулевым показателем преломления, которые удовлетворительно согласуются с экспериментом. По-видимому, такой же способ усреднения амплитуд отражения и преломления света может быть применен и для неоднородной границы композита с квазинулевым показателем преломления. Однако, однозначный ответ здесь может быть получен только с помощью экспериментальных данных.

Данная работа поддержана Фондом содействия развитию малых форм предприятий в научно-технической сфере (проект #19734) и Инвестиционно-венчурным фондом республики Татарстан. ООО "Солар Нано Композит" является резидентом фонда Сколково.

1. O.N. Gadomsky and K.K. Altunin, Opt. Commun. 285,

Письма в ЖЭТФ том 98 вып. 1-2 2013

816 (2012).

- M. Navarro-Cia, M. Beruete, I. Campillo, and M. Sorolla, Phys. Rev. B 83, 115112-1 (2011).
- 3. B. Tao and L. Fu-Li, Journal of the Optical Society of America B **26**, 96 (2009).
- V. C. Nguyen, L. Chen, and K. Halterman, Phys. Rev. Lett. 105, 233908-1 (2010).
- 5. О. Н. Гадомский, Н. М. Ушаков, В. Я. Подвигалкин и др., Патент Р
Ф $\#\,2456710$ от 20.07.2012.
- 6. М. Борн, Э. Вольф, Основы оптики, М.: Наука, 1973.
- О. Н. Гадомский, Успехи физических наук 170(11), 1145 (2000).
- Поверхностные поляритоны (под ред. В. М. Аграновича, Д. Л. Миллса), М.: Наука, 1985.