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A double quantum well affected by external alternating electric field with in- and out-of-plane compo-

nents is studied. This field causes transitions between near-degenerate states located in different wells. The

phototransitions are accompanied by the in-plane momentum non-conservation caused by the impurity scat-

tering. We study the in-plane stationary current due to the lack of the in-plane symmetry of these indirect

phototransitions. It is shown that the value and direction of the current are determined by the polarization

of light. The linear and circular photogalvanic coefficients are found. When the photon energy approaches

the distance between subbands these coefficients have their symmetric and antisymmetric resonance behavior,

correspondingly.
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1. Introduction. The stationary photocurrent

caused by the lack of the system inversion symmetry in

homogeneous systems (photogalvanic effect, PGE) was

a subject of a wide circle of literature, see reviews [1–6],

and the activity in this field continues. In confined

systems the photogalvanic current along the surface

exists due to non-equivalence of the directions across

the surface, even if crystal asymmetry is negligible

[7–12]. In this case the current occurs if the electric field

of the light has both in- and out-plane components.

A simple model of this effect has been discussed in

our recent paper [13]. We have considered the PGE in

a classical parabolic well in which electrons experience

non-homogeneous (across the well) liquid friction. In

this system the difference of electron friction on different

well sides causes unequal stalling of the vibrational or

rotational motion in the alternating electric field that,

in turn, leads to the electron drift along the well.

The phenomenology of PGE in a confined system is

determined by the relation for the current density

j = αs([E− n(nE)](nE∗ + c.c) + iαa[n[EE∗]], (1)

where n is the normal to the quantum well, E(t) =

= Re(Ee−iωt) is the alternating electric field of light.

Real constants αs and αa describe linear and circular

photogalvanic effects, correspondingly.

The present paper deals with the PGE in a dou-

ble quantum well, where the light causes the transitions

between closely spaced collectivized quantum subbands

originating from individual wells. This system looks per-
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spective because the structure of the levels of a double

quantum well permits easy tuning of the distance be-

tween subbands to the frequency of the external field.

The PGE in a double quantum well is illustrated

by Fig. 1. Since the appearance of the photogalvanic

current requires non-conservation of the in-plane mo-

mentum in the electron excitation process, the photo-

transitions should include the participation of the ”third

body”. In our case the impurities play the role of this

agent.

We consider intersubband transitions of electrons in

a system with the quadratic energy spectrum. An elec-

tron goes between two states ǫn(p) and ǫn′(p′) due to

the simultaneous action of electric field and scattering.

These states originate from mixing the states of dif-

ferent individual quantum wells. The in-plane current

appears due to the change of electron in-plane momen-

tum. To “memorize” electric field in- and out-plane com-

ponents, the transition probability should contain their

product. For non-conservation of the electron momen-

tum the scattering should be taken into account. This

transition probability arises in the second order of the

perturbation theory. The amplitude of transitions has a

resonance on an intermediate state. The subbands of the

quantum well are equidistant, that gives rise to the ab-

sence of the resonance smearing due to the difference in

electron momenta. The result of excitation is the pump-

ing of the momentum to the electron subsystem and the

in-plane current.

The paper is organized as follows. First, we will find

the transition probability in a classical electric field.

Then, the current will be found using a many-band ki-
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Fig. 1. (a) – The scheme of the proposed experiment. Elec-

tric field of light E(t) has both in-plane and out-of-plane

components. (b) – The sketch of the band structure. Quan-

tum wells are centered in planes z = ±d/2. The carriers

are provided by the δ-layer of donors in plane z0. (c) – The

transition diagram. The transition amplitude includes ver-

tical transition caused by the light between ± subbands

and impurity scattering which does not conserve the in-

plane momentum

netic equation. The last paragraph is devoted to the

discussion of the obtained results.

Stationary photocurrent in a double well. We

study electrons with a parabolic isotropic energy spec-

trum in a double quantum well (see Fig. 1). The am-

plitude of transition between wells is weak, but compa-

rable to the separation of energies of individual wells.

The states with in-plane electron momentum p and

subband number n = ± |n,p〉 = χn(z) exp(ipρ)/
√
S,

(S is the system area, we set ~ = 1) have energies

ǫn,p = p2/2m+ εn. In this case, the subbands are par-

allel, ǫ+,p− ǫ−,p ≡ ε+− ε−. This circumstance plays an

important role in the further consideration, providing

the resonance of optical frequency with a distance be-

tween subbands for electrons with arbitrary momenta.

The overlapping of wave functions χn(z) is supposed to

be weak and intersubband distance ε+−ε− = ∆ (∆ > 0)

is small as compared to the Fermi energy. The scatterers

(donors) are distributed in a delta-layer at z = z0 > 0.

The well widths and the distance d between them are

assumed to be small as compared to z0.

Assuming that the mean free time is large as com-

pared to the distance between the levels of quantum

wells (and also the Fermi energy), one can treat n and

p as good quantum numbers and describe the problem

within the kinetic equation for distribution functions

fn,p. In such an equation, external classical alternating

electric field E(t) causes the transition between unper-

tubed states and determines the generation term in the

kinetic equation.

The kinetic equation for the stationary distribution

function reads

∑

n′,p′

W imp
n,p;n′,p′(f

(1)
n′,p′ − f (1)

n,p) +Gn,p = 0. (2)

Here the first term represents the relaxation due to the

scattering processes. Quantity f
(1)
n,p is the first correc-

tion to equilibrium distribution function f
(0)
n,p. Function

Gn,p is the generation caused by a combined action of

the external electric field and the scattering. This term

is quadratic in the electric field. Using classical kinetic

Eq. (2) means neglecting the off-diagonal elements of the

density matrix that is valid if the collision broadening

of subbands is less than the distance between them.

Generation Gn,p is given by

Gn,p =
∑

n′,p′

W ph
n,p;n′,p′(f

(0)
n′,p′ − f (0)

n,p). (3)

We restrict ourselves by the case when the scattering is

determined by the charged impurities, so that W imp

n,p;n′,p′

is attributed to the impurities and W ph
n,p;n′,p′ – to im-

purities and the electromagnetic field. Then W ph
n,p;n′,p′

is determined by the second order perturbation term

which includes the Hamiltonian of the interaction with

electromagnetic field Ĥph and the potential energy of

the electron interacting with impurities V̂ . Operator

Ĥph is

Ĥph =
e

c
Re
(

Ae−iωt
)

v̂ ≡ 1

2
(Ûe−iωt + h.c.), (4)

where Re(Ae−iωt) is the vector potential of electromag-

netic field with frequency ω, v̂ = (v̂‖, v̂z) is the ve-

locity operator. The complex amplitude of the electric

field is E = iωA/c. Thus, the operator Û = e(Ev̂)/iω.

Note that we suppose the electric field to be homoge-

neous. The diagonal elements of in-plane components
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of the velocity operator v
‖
n,p;n′,p′ = vpδnn′δp,p′ , vp =

= ∂pǫn,p = p/m. The normal component has matrix

elements vzn,p;n′,p′ = vzn,n′δp,p′ . The impurity potential

reads

V (r) =
∑

i

u(r− ri), (5)

where the sum runs over all the impurities situated in

points ri with individual potentials u(r− ri).

The excitation probability including the impurity

scattering is determined by the second-order transition

amplitude. The needed term arises from the interference

of amplitudes caused by the Ez and in-plane compo-

nents of the electric field. The draft of the transitions is

depicted in Fig. 1.

In the second order of the interaction, the transition

probability is

W ph
n,p;n′,p′ =

π

2

{

δ(ǫn,p − ǫn′,p′ + ω)×

〈

∣

∣

∣

∣

∣

∑

n1

[

Vn,p;n1,p′U+
n1,p′;n′,p′

η + i(εn1,n′ + ω)
+
U+
n,p;n1,pVn1,p;n′,p′

η + i(εn1,n − ω)

]
∣

∣

∣

∣

∣

2
〉

+

δ(ǫn,p − ǫn′,p′ − ω)×
〈

∣

∣

∣

∣

∣

∑

n1

[

Vn,p;n1,p′Un1,p′;n′,p′

η + i(εn1,n′ − ω)
+
Un,p;n1,pVn1,p;n′,p′

η + i(εn1,n + ω)

]
∣

∣

∣

∣

∣

2
〉

}

;

(η = +0). (6)

Here εn1,n ≡ εn1
− εn; angular brackets denote the av-

erage over impurities configuration.

The denominators in Eq. (6) have their resonance

with the field frequency independently from the elec-

tron momentum. At the same time, the resonance in

the final state is absent due to non-conservation of the

in-plane momentum.

Eq. (6) can be rewritten in the form (E = (E‖, Ez)):

W ph
n,p;n′,p′ =

πe2

2ω2
×

(

〈

∣

∣

∣

∣

∣

∑

n1

{

Vn,p;n1,p′

[

vp′E∗
‖δn1,n′

iω
+

vzn1,n′E∗
z

η + i(εn1,n′ + ω)

]

+

+

[

vpE
∗
‖δn,n1

−iω
+

vzn,n1
E∗

z

η + i(εn1,n − ω)

]

Vn1,p;n′,p′

}∣

∣

∣

∣

∣

2
〉

×

δ(ǫn,p − ǫn′,p′ + ω) +

〈

∣

∣

∣

∣

∣

∑

n1

{

Vn,p;n1,p′

[

vp′E‖δn1,n′

−iω
+

vzn1,n′Ez

η + i(εn1,n′ − ω)

]

+

+

[

vpE‖δn,n1

iω
+

vzn,n1
Ez

η + i(εn1,n + ω)

]

Vn1,p;n′,p′

}∣

∣

∣

∣

∣

2
〉

×

δ(ǫn,p − ǫn′,p′ − ω)

)

. (7)

It is evident that the contribution to photogalvanic

effect is given not by the total transition probability

W ph, but only its odd in p,p′ part. For this part, we

have the following expression:

W̃ ph
n,p;n′,p′ =

πe2

mω3

[

〈

Re

(

∑

n1

{

Vn,p;n′,p′(p′ − p)E∗
‖ ×

[

V ∗
n,p;n1,p′vzn′,n1

Ez

iη + (εn1,n′ + ω)
+

vzn1,nEzV
∗
n1,p;n′,p′

iη + (εn1,n − ω)

]})

〉

×

δ(ǫn,p − ǫn′,p′ + ω) +
〈

Re

(

∑

n1

{

Vn,p;n′,p′(p− p′)E‖ ×
[

V ∗
n,p;n1,p′vzn′,n1

E∗
z

iη + (εn1,n′ − ω)
+

vzn1,nE
∗
zV

∗
n1,p;n′,p′

iη + (εn1,n + ω)

]})

〉

×

δ(ǫn,p − ǫn′,p′ − ω)

]

. (8)

The current density is expressed via the first angular

harmonics of f
(1)
n,p:

j =
2e

S

∑

n,p

vpf
(1)
n,p. (9)

Owing to this fact, kinetic equation Eq. (2) can be trans-

formed to algebraic form

1

τn(p)
f (1)
n,p − 1

τn,−n(p)
f
(1)
−n,p = Gn,p, (10)

where one should keep the first angular harmonic of

Gn,p only. In Eq. (10), τn(p) is the intra-subband trans-

port relaxation time and τn,−n(p) is the time of transi-

tion from state (n,p) to all states of the subband (−n).

These values are determined by

1

τn(p)
= 2π

∑

p′

[〈

|Vn,p;n,p′ |2
〉

δ(ǫn,p − ǫn,p′)

(

1− pp′

p2

)

+
〈

|Vn,p;−n,p′ |2
〉

δ(ǫn,p − ǫ−n,p′)
]

;

1

τn,−n(p)
=

= 2π
∑

p′

〈

|Vn,p;−n,p′|2
〉

δ(ǫn,p − ǫ−n,p′)
pp′

p2
. (11)
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Solving Eq. (10) we find (argument p is omitted):

f (1)
n =

(

Gnτn +G−n
τ+τ−
τn,−n

)(

1− τ+τ−
τ+,−τ−,+

)−1

. (12)

The expressions for τn(p), τn,−n(p) and

W̃ ph
n,p;n′,p′ contain the correlators of the form

〈

Vn,p;n′,p′Vm,p;m′,p′

〉

. In the case of impurities

situated in layer z = z0 (ri = (ρi, z0)), function V (r)

reads

V (r) =
∑

q,i

uqe
−q|z−z0| exp [−iq(ρ− ρi)], (13)

where uq is the 2D Fourier component of the impurity

center potential. For example, for unscreened Coulomb

center uq = 2πe2/κqS (κ is the background dielectric

constant), the correlators are given by

〈

Vn,p;n′,p′V ∗
m,p;m′,p′

〉

= nsS

∫

dzdz′|up−p′ |2 ×

× e−q(2z0−z−z′)χn(z)χn′(z)χm(z′)χm′(z′). (14)

Here ns is the areal density of scatterers. We suppose

that the electron wavelength is larger than d. In this

approximation one can find from Eq. (14):

〈

Vn,p;n′,p′V ∗
m,p;m′,p′

〉

= nsS|up−p′|2e−2qz0 ×

×
[

δn,n′δm,m′ + q(zn,n′δm,m′ + zm,m′δn,n′)
]

. (15)

Matrix elements znn′ should be estimated for specific

wave functions. For simplicity, we will use the wave func-

tions of two delta-functional wells in the tight-binding

approximation. The seed states with energies ε0±∆0/2

can be written as

χ1,2 =
√
κe−κ|z∓d/2|. (16)

In basis (16) χ+ = (1, β)/
√

1 + β2, χ− =

= (β,−1)/
√

1 + β2, where β is the mixing amplitude.

The corresponding states energies are ε± = ε0 ± ∆/2,

∆ =
√

∆2
0 + 4t20, where t0 ∼ ε0e

−κd is a hop-

ping amplitude between wells. For quantity β we

have β = 2t0/(∆ + ∆0). The matrix elements of z are

z++ = −z−− = d(1−β2)/[2(1+β2)], z+− = βd/(1+β2).

Inserting Eq. (15) into Eq. (11) we get the expres-

sions for τ+ ≈ τ− = τ and a small difference 1/τ−−1/τ+:

1

τ
= mns

∫

dq

2π
|ũq|2e−2qz0δ(q2 + 2pq)

q2

p2
,

1

τ−
− 1

τ+
= m(z++ − z−−)ns ×

×
∫

dq

π
|ũq|2e−2qz0δ(q2 + 2pq)

q3

p2
, (17)

where ũq = Suq. From Eq. (15) it is seen that τn,−n ≫
≫ τn and, so, Eq. (12) can be simplified

f (1)
n = Gnτn. (18)

Further we will consider the resonance situation when

frequency ω is close to ∆. Smallness ∆, as compared

to the Fermi energy ǫF = p2F/2m (pF being the Fermi

momentum) leads to approximate expressions for G+ ≈
≈ −G−,

G+ = −nse
2∆z2+−

πω2

∂f
(0)
p

∂µ

∫

dq Im

(

q · E‖E
∗
z

∆− ω + iη

)

×

× q|ũq|2e−2qz0δ(q2 + 2pq). (19)

For the current we have from Eqs. (9), (12), (19)

j =
nse

3∆z2+−

4π3mω2
×

×
∫

dp
∂f

(0)
p

∂µ
(τ+ − τ−)Im

(

q · E‖E
∗
z

∆− ω + iη

)

×

×
∫

dq|ũq|2e−2qz0q3e−2qz0δ(q2 + 2pq). (20)

Eq. (20) has a resonant character with the resonance

at ω = ∆. This resonance results from the intermedi-

ate state for transition due to the parallelism (equidis-

tance) of subbands. The resonance is smeared due to

scattering, e.g., by impurities. To include this smearing,

infinitesimal η was replaced by finite relaxation rate 1/τ

which can be estimated from mobility. This leads to the

current finiteness at the resonance point.

At temperature T = 0 the latter expression is sim-

plified, and we obtain the final results for the required

values in the model of two δ-like wells:

αs = α0
1

(∆− ω)2τ2 + 1
; αa = α0

∆− ω

(∆− ω)2τ2 + 1
;

α0 =
2e3nedτ∆

mω2

(β2 − 1)β2

(1 + β2)3
F, (21)

where ne = mǫF/π is the electron concentration. Be-

sides we introduced a dimensionless quantity F =

= d2Φ2
3Φ

−2
2 ,

Φs =

∫ 2pF

0

dqqs|ũq|2e−2qz0
1

√

1− q2/4p2F
. (22)

In the specific case of pFz0 ≫ 1 Eq. (22) is reduced to

Φs =

∫ ∞

0

dqqs|ũq|2e−2qz0 . (23)

If the scattering is determined by the charged non-

screened impurities F = d2/4z20.
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Discussion. Let us compare the linear and circu-

lar effects. Linear coefficient αs has a constant sign,

while circular coefficient αa changes the sign at ∆ = ω.

Namely, αs has the δ-like frequency dependence and αa

has the antisymmetric resonance. Note that in the vicin-

ity of the resonance αs(ω) and αa(ω) have same orders

and at |ω − ∆|/τ ≫ 1 αa(ω) ≫ αs(ω). Coefficients αs

and αa get the extrema at ∆ = ω and ∆ = ω ± 1/τ ,

correspondingly. The ratio of these absolute values in

these points is max(αs)/max(|αa|) = 2. Similar behav-

ior was marked for interband transitions [9, 10] and in

a classical parabolic well [13].

In the experiment it can be convenient to scan ∆0

by means of the gate voltage V at a fixed frequency.

In a gated system, parameter ∆0 depends on the gate

voltage as (V − V0)d/D, where D is the distance to the

gate, V0 is the value of V for which ∆0 = 0. When ∆0

runs all the range, resonance ∆ = ω is passed twice.

The typical dependences of the PGE coefficients

on the gate voltage via parameter ∆0 are depicted

in the Fig. 2. We have chosen the parameters for

Fig. 2. Dependence of the PGE coefficients αs (solid) and

αa (dashed) on the bias voltage (expressed via the pa-

rameter ∆0). The dotted lines mark the exact resonance

ω = ∆. The current changes sign with the sign of ∆0 (see

inserts)

the GaAs/AlGaAs double quantum well d = 10−6 cm,

z0 = 3 · 10−6 cm, ǫF = 20meV (ne = 6.2 · 1011 cm−2),

∆ = 0.1meV, τ = 4 · 10−11 s. Coefficient αs has a res-

onance peak and αa goes through zero when the fre-

quency coincides with the distance between subbands.

Besides, both coefficients change the sign at ∆0 = 0.

The found current value looks quite measurable.

It should be emphasized that the initial and final

states in the optical transition can belong to different or

the same subbands. The resonant behavior results from

the resonance on the intermediate state rather than the

energy conservation in the final states, because the con-

servation law for the phototransition with the partici-

pation of impurity scattering does not give a fixed fre-

quency for the transition. The sharpness of the reso-

nance is conditioned by the equidistance of the energy

bands in a 2D well.

In conclusion, we found the stationary current along

a double-well system affected by the linear-polarized far-

infrared wave. The stationary current originates from

the periodic vibration of electrons between two non-

equivalent quantum wells caused by the normal compo-

nent of the alternating electric field with synchronic in-

plane acceleration/deceleration by the in-plane electric

field component. The photogalvanic effect needs verti-

cal asymmetry of the double quantum well. The effect

has a peak resonant structure connected with the par-

allel subbands of the double quantum well. The reso-

nant frequency can be easily tuned by the application

of the gate voltage. The optimal range of frequencies

is 1011−1013 s−1. The predicted value of the current is

experimentally measurable.
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