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Finite-size effect in shot noise in hopping conduction1)
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We study a current shot noise in a macroscopic insulator based on a two-dimensional electron system in

GaAs in a variable range hopping (VRH) regime. At low temperature and in a sufficiently depleted sample a

shot noise close to a full Poissonian value is measured. This suggests an observation of a finite-size effect in shot

noise in the VRH conduction and demonstrates a possibility of accurate quasiparticle charge measurements

in the insulating regime.
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As first shown by Schottky for the case of a vacuum

tube, electric current can be viewed as a sequence of un-

correlated pulses corresponding to arrivals of individual

electrons at the anode [1]. A mean-squared current fluc-

tuation (shot noise) in this random Poissonian process

has a spectral density of SI = 2qI, where q ≡ e is the

elementary charge and I is the average current. A direct

shot noise measurement of the charge q of a quasipar-

ticle is intriguing in application to various solid state

materials, where q can be renormalized by interactions

(q 6= e) [2, 3]. This list includes nontrivial many-body

insulating states in charge-density wave compounds [4],

in cooper pair insulators [5, 6] and in the bulk of a two-

dimensional (2D) system in fractional quantum Hall ef-

fect [7].

The above concept of the charge measurement in

solid state can be complicated by a non-Poissonian

statistics of the current flow [8], as characterized by a

Fano factor F ≤ 1 in the expression for the noise spec-

tral density SI = 2FqI. At low enough temperatures

(T ) the transport in the band of localized states occurs

via a variable range hopping (VRH) conduction [9]. Un-

like the case of coherent transport at T = 0 [10], the

Fano factor in the VRH regime is not universal, which

is a fundamental problem for the charge measurements.

In long enough samples, the experiments in 2D VRH

regime [11, 12] find that the Fano factor decays with

the sample length roughly as F ∝ L−1. This behav-

ior is qualitatively explained by the averaging of the

1)See Supplemental material for this paper on JETPL Letters

site: www.jetpletters.ac.ru, v. 98, iss. 2.
2)e-mail: dick@issp.ac.ru

Poissonian noises associated with different hops, anal-

ogous to noise averaging in a one-dimensional array

of N identical tunnel junctions F = 1/N [13]. In the

VRH conduction regime, however, the hopping rates

are spread exponentially wide, so that only the most

resistive hops (so called hard hops) are important for

the noise averaging [11, 12]. A typical distance between

these hard hops, known as a correlation length LC of

the critical cluster [9], represents a length scale for

the Fano-factor [11, 12] in long (L ≫ LC) samples:

F ≈ (L/LC)
−1. Numerical calculations support this

qualitative picture [14, 15]. The shot noise in the op-

posite limit L ≤ LC is not understood. On one hand,

the numerical results [15] suggest that in short sam-

ples the Fano factor remains sub-Poissonian (F ≈ 0.7).

On the other hand, the experiments do not exclude the

full Poissonian noise value in sub-micrometer sized sam-

ples [11, 16].

Here we investigate the shot noise in an insulat-

ing state of a macroscopic 2D electron system of a

GaAs/AlGaAs heterostructure. There is no doubt that

q ≡ e in this system, which makes it an ideal test bed to

study the current statistics in the insulating state. The

shot noise close to the Poissonian value is achieved in the

VRH conduction regime at low T and in a sufficiently

depleted sample. We interpret this as a manifestation of

a finite-size effect in shot noise at L ∼ LC and support

by transport measurements. Available theories [13–15]

have difficulties to explain these observations and an

alternative simplified explanation in classical terms is

proposed. Our results open up a possibility of accurate

quasiparticle charge measurements in nontrivial many-

body insulating states [4–7].
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Our samples are based on a two-dimensional electron

system (2DES) in GaAs/AlGaAs buried 34 nm below

the surface. The as-grown electron density and mobility

(at 4.2 K) of the 2DES are, respectively, 3.5 · 1011 cm−2

and 2.8 ·105 cm2/Vs. A metallic front gate is used to de-

fine an insulating strip in the 2D channel with the length

of L = 5 µm along the current flow and the width of

100 µm (see the inset in Fig. 1). We measured two nom-

Fig. 1. (a) – I−V measurements. I−V curves at T =

= 0.56K for a set of gate voltages in sample 1: Vg =

= −0.302V (1), −0.308V (2), −0.339V (3). Inset: the

sketch of the sample layout used. (b) – Nonlinearity vs

temperature. The T dependence of the threshold bias volt-

age where the I−V curves deviate from the linearity by

20%. The triangles and squares correspond, respectively,

to R� = 1.6 and R� = 18MΩ (at T = 0.47K)

inally identical samples and obtained basically the same

results reproducible in respect to a thermal recycling.

A two-terminal resistance and I−V curves were

measured with a low-noise 100 MΩ input resistance

preamplifier and a ∼ 300 Ω series resistance was sub-

tracted. For noise measurements the sample was con-

nected in series with a load resistor R0 = 1 kΩ. A volt-

age noise on R0 was amplified by a set of rf-amplifiers

and detected in the frequency band 10–20 MHz. A to-

tal gain of the circuit was about 70 dB. The first cas-

cade of amplification was represented by a home-made

low-T amplifier placed nearby (about 1 cm) the sam-

ple. Analyzing the data we treated the load resistor, the

ohmic contacts and the 2D channel as independent noise

sources. The respective rf-impedances are equal to the

dc differential resistances [1], obtained by a numerical

differentiation of the I−V curves. The absolute calibra-

tion was utilized via the Johnson–Nyquist noise mea-

surements, with both the T and the sample resistance

varied. In this approach the influence of a shunt capaci-

tance of ∼ 5 pF is automatically absorbed into the load-

dependent gain. An example of one such measurement

is shown in supplemental material. The noise measure-

ments were performed in a liquid 3He cryostat in the

range 0.5 ≤ T ≤ 4.2K. A 3He/4He dilution refrigerator

was mainly used to extend the T -range of the resistance

measurements down to 60 mK.

Care was taken to ensure that the measured shot

noise originates from charge discreteness and is not in-

fluenced by noises of different origin. With this goal we

chose the frequencies at least two orders of magnitude

higher than in previous experiments [11, 12, 16]. Also

the heterostructure used was relatively clean, so that the

samples did not exhibit sizeable mesoscopic fluctuations

even at low-T and strong depletion. As a result, we were

able to completely get rid of the 1/f and telegraph-like

noises [17], such that SI ∝ I and is frequency indepen-

dent in the range 10–100 MHz.

In Fig. 1a we plot I−V curves measured at T =

= 0.56 K for a set of gate voltages Vg. A minor asymme-

try of the I−V curves in respect to the origin is related

to a grounding of the drain contact. As a result the effec-

tive gate voltage is more positive at negative currents,

so that the negative I−V branches are more conducting.

All the I−V s are strongly nonlinear and the nonlinear-

ities strengthen with the sample depletion. The nonlin-

earities are more pronounced at lower T , that can be

characterized by a T -dependence of the threshold bias

voltage Vth. In the absence of a clear threshold behav-

ior we define Vth as the bias voltage corresponding to a

20% deviation of the I−V from the linear dependence at

small V . The Vth increases approximately linearly with

T , as shown in Fig. 1b. This observation is insensitive to

the criterium used to define Vth.

Next we turn to the shot noise measurements in this

strongly nonlinear regime. Fig. 2a shows the noise spec-

tral density as a function of current at T = 0.56 K for a

set of gate voltages. The dependencies SI(I) are almost

symmetric in respect to the current reversal and linear

at not too high |I|, which is characteristic for the shot

noise. The Fano factor determined from this linear re-

gion is seen to increase with the sample depletion. Note
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Fig. 2. Shot noise measurements. (a) – Shot noise spectral

density as a function of current at T = 0.56K (sample 1).

The resistivity (the Mott temperature) from top to bot-

tom are: R� = 58MΩ (T0 ≈ 300K), 8.8 MΩ (140 K), 1MΩ

(40K). The dashed lines are fits used to extract the Fano

factor. The scales on both axes are reduced by a factor

of 50 (5) for the lowest (middle) curve and the two up-

per curves are vertically offset in steps of 2 · 10−28A2/Hz.

(b) – Shot noise spectral density as a function of cur-

rent for three temperature values and R� = 26MΩ (at

T = 0.47K), T0 ≈ 300K (sample 2). The dashed guide line

corresponds to F = 1. Inset – a sketch of hopping along

a quasi-1D filament of the VRH network with a hard-hop

in the middle. The empty/occupied localized stated are

depicted as, respectively, the empty/filled circles

that in order to tune F between 0.6 and 1 one has to

vary the linear response resistance by about two orders

of magnitude. Fig. 2b demonstrates the T -dependence of

the shot noise at a fixed Vg. At higher T the Fano fac-

tor is determined outside a crossover region between the

equilibrium Johnson–Nyquist noise and the shot noise.

Here F increases from ≈ 0.4 to ≈ 0.9 when the sample

is cooled down from 4.2 to 0.47 K. The central result

of our paper, shown in Fig. 2, is that at low enough

T and for a strong enough depletion the shot noise in

a macroscopic sample can reach the maximum possi-

ble Poissonian value F = 1.0 ± 0.1. As argued below,

this behavior can be interpreted as an observation of a

finite-size effect in shot noise in the VRH conduction.

The observation of the Poissonian current statistics in

the VRH conduction in a macroscopic sample is remark-

able. In particular, this result opens up a possibility for

measurements of q in nontrivial many-body insulating

states [4–7] where it might differ from e.

We would like to stress that in our experiment the

shot noise stays close to the Poissonian value even

at the strongest depletions3). This is in contrast to a

low-frequency random telegraph-like noise in hopping

regime [17] which causes deviations from the linear de-

pendence SI ∝ I [11] and super-Poissonian noise val-

ues [18]. It is a proper choice of the frequency range that

allowed us to get rid of the spurious noises and study

the fundamental properties of the current statistics in

the VRH regime.

Gate voltage dependencies of the linear response re-

sistivity R� are plotted in Fig. 3a for two temperatures

4.2 and 0.5 K. The resistivity is found to strongly in-

crease at sample depletion without significant meso-

scopic fluctuations. This data demonstrates a roughly

exponential dependence of R� on the carrier density

and indicates a strong localization of the electrons. In

Fig. 3b we plot the conductivity G� ≡ 1/R� as a func-

tion of T for different values of Vg . With decreasing

T the conductivity drops by 1–2 orders of magnitude.

Above 0.2 K the T -dependencies are best described by

the Mott VRH law in 2D: lnG� ∝ −(T0/T )
1/3 (dotted

lines). Here T0 = 13.8/(kBga
2) is the Mott temperature,

g – the density of states at the Fermi level and a – the

localization radius [9]. As seen from Fig. 3b, T0 increases

with the sample depletion, which we associate with the

decrease of a and g. Note that a thermal recycling typ-

ically caused some shift of the gate voltage position of

the mobility edge. For this reason, the data from dif-

ferent cryostats were taken at different Vg, so that the

T -dependencies coincide in the range where they over-

lap. Such data are shown by different symbols in Fig. 3b.

At low T we observe deviations from the Mott VRH law

and the T -dependencies slow down. We have checked via

noise measurements that the electronic T follows that

of the bath down to ≈ 120mK (see supplemental ma-

3)The Fano factor in our devices stays close to unity at strong

depletions. A slightly superpoissonain noise F ≈ 1.15 was ob-

served at the lowest Vg, accompanied by a ∼ 10% asymmetry of

the dependencies SI (I), as, e.g., for the topmost curve in Fig. 2a.
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Fig. 3. Linear response resistance/conductance. (a) – Gate

voltage dependencies of the resistivity at two different

temperatures (sample 1). (b) – T dependence of the con-

ductivity in sample 1 for three different depletions (see

text). The best fits to the Mott VRH law are plotted as

the dotted lines and the respective values of T0 are shown

nearby. The fits to the low-T deviations from the Mott law

on the two upper curves are shown by the dashed lines.

The fit parameter TP equals 0.14/0.2 K for the top/middle

curves (see text)

terial), i.e. the deviation is unlikely to be caused by an

electromagnetic pick-up.

The localization radius a can be evaluated from a

measurement of the nonlinear I–V curves. In moderate

electric fields, the theoretical predictions differ depend-

ing whether a typical hop [19] or the hard hop [20] is

assumed to be relevant in the nonlinear regime. Our

data is in reasonable agreement with the theory of

Schklovskii [20], which predicts the nonlinearity in the

form I ∝ exp [eVsd/kBT · LC/L]
1/(1+ν), where LC is

the correlation length and ν = 4/3 is the 2D criti-

cal index [9]. Linear dependencies of the form log I ∼

∼ [eVsd/kBT ]
3/7 are demonstrated in Fig. 4. This data

Fig. 4. Nonlinear VRH conduction. Nonlinear I–V curves

(solid lines) at T = 0.47 K are well described by the theory

of Ref. [20]. The curves are obtained for a set of R� ≈ 0.5,

1.6, 6, 19MΩ, respectively, from top to bottom. The slope

of the dashed line corresponds to LC ≈ 11µm, see text

is taken at T = 0.47K for linear response resistances in

the range 0.5 < R� < 20 MΩ. The respective Mott tem-

peratures vary by a factor of ∼ 7 (cf. Fig. 3b). The the-

ory [20] is consistent with the experiment in the range

eVsd ≥ 2kBT , which includes the nonlinearity threshold

Vth defined above, see Fig. 1b. Surprisingly, the slopes of

the linear dependencies are almost independent of R�

and correspond to a correlation length of LC ≈ 11µm

(see the dashed line in Fig. 4). This value of LC exceeds

the sample size and gives an estimate of the localiza-

tion radius a > 130 nm. Alternatively, one can evaluate

a from the exponential magnetoresistance in perpendic-

ular magnetic fields [9]. Fitting such a measurement to

a theory [21] we get a different estimate of a ∼ 50 nm

for R� ∼ 5MΩ. Such a large discrepancy between the

two methods might be related to the fact that the cal-

culations [20, 21] are performed for the semiconductor

impurity band, whereas in our samples the localization

occurs in a smooth disorder potential.

As demonstrated in Figs. 2 and 3, our samples ex-

hibit the Poissonian shot noise and behave like macro-

scopic VRH insulators. Below we argue that this is a re-

sult of a finite-size effect in the VRH conduction [22, 23].

The key properties of the VRH conduction are cap-

tured by a model of the Miller-Abrahams random re-

sistor network (see, e.g., [9]). The model assumes that

a pair of localized states, separated by a distance rij ,

is connected by a resistor Rij = R0 exp ξij , where

ξij = 2rij/a + εij/kBT and εij is determined by the

energies of the two states and the chemical potential

(a prefactor R0 is not to be confused with load resis-

Письма в ЖЭТФ том 98 вып. 1 – 2 2013



Finite-size effect in shot noise. . . 135

tance defined above). The percolation theory calculates

a resistivity of this network by connecting only those

resistors with ξij ≤ ξC , where ξC = (T0/T )
1/3 is a per-

colation threshold [9]. This applies for localized states

separated by an average distance (hop length) lT = aξC .

The resistivity is determined by the hard hops with the

resistances R0 exp ξC and the correlation length LC =

= lT (T0/T )
ν/3 = a(T0/T )

(ν+1)/3, where ν = 4/3 is the

2D critical index.

In our samples LC is varied by changing the T or the

gate voltage. Although the experimental uncertainty in

a does not permit a reliable estimate of the correlation

length, it seems natural that LC decreases at increasing

T and for smaller sample depletions. As seen from Fig. 2,

this corresponds to the decrease of the Fano factor from

F ≈ 1 to sub-Poissonian values because of the noise

averaging out [13]. The dependence of F on the ratio

L/LC can be evaluated from Fig. 2b, since LC ∝ T−7/9.

The observed change in F is roughly twice smaller than

follows from the asymptotic law F ∝ (LC/L)
∼0.8 at

L ≫ LC [14, 12], which is qualitatively consistent with

the saturation of F at L ∼ LC in numerical calcula-

tions [15]. Hence the onset of the Poissonian shot noise

at low-T and strong depletions in our samples is a result

of the finite-size effect L ∼ LC in the VRH regime.

Transport measurements give further evidence for

the finite-size effect in the VRH regime. In a finite sam-

ple, the percolation threshold falls below that for an

infinite system [22]. This gives rise to a low T devi-

ation of the dependencies G�(T ) from the Mott law,

as indeed observed in Fig. 3b. For small deviations one

has [22] lnG ∝ −(T0/T )
1/3 + 0.25(TP/T )

7/3, where TP

is a crossover temperature at which L ∼ LC . The data

of Fig. 3b is in reasonable agreement with this formula

with TP as a fit parameter (dashed lines). The T de-

pendence of the I–V nonlinearity is also consistent with

the finite-size effect. According to [20], for L ∼ LC the

electrochemical potential drops across a single hard hop,

which results in a linear T -dependence Vth ∝ T of the

threshold voltage where the nonlinearity sets in. As seen

from Fig. 1b, this is indeed the case in our samples. Con-

sistently, the correlation length extracted from the I–V

curves exceeds the sample length at low-T (Fig. 4).

As briefly discussed in the introduction, the shot

noise in long samples is not universal and averages out

in the limit L ≫ LC [11–16]. Below we discuss the

shot noise in the most interesting limit L ∼ LC . In

this regime the Miller–Abrahams network breaks up

into quasi-1D filaments [22] connecting the source and

drain reservoirs in parallel. Our observation of the Pois-

sonian shot noise in such a system is puzzling, because

of a large number of hops involved. For instance the up-

per curve in Fig. 2a corresponds to at least LC/lT ∼ 8

hops per filament. Since their contributions to the to-

tal current and noise are additive, in the following we

consider the noise of just one such filament. In a cir-

cuit model [13], the i-th hop in a path is treated as an

independent Poissonian noise source with a resistance

Ri = R0 exp ξi. In the VRH regime Ri belong to a geo-

metrical sequence with a common ratio of ∼ 3 [9], which

results in F =
∑

R2
i /(

∑
Ri)

2 ≈ 0.5. In order to obtain

F = 0.9, which is the lowest bound to the experimen-

tal value, an unreasonably broad distribution of Ri has

to be assumed (a common ratio of 20). This scenario

is unlikely, especially in the regime L ∼ LC , where the

resistance network is more uniform than in an infinite

sample [22].

We propose a classical approach to the shot noise

in the VRH regime based on an analogy with the shot

noise in the vacuum tube. Consider a chain of N local-

ized states (sites) connected by random hopping rates

Γi among which the smallest rate ΓH corresponds to

the hard hop in the middle. In the nonlinear regime,

the electrochemical potential difference across the chain

is large (eV ≫ kBT ) and the hopping occurs prefer-

ably in one direction, say from the left to the right. In

the limit ΓH → 0, the sites on the left (right) hand

side from the hard hop are occupied (empty) most of

the time. In this situation, the current occurs via rare

injection events across the hard hop and consists of a

single vacancy hopping on the left and a single elec-

tron hopping on the right (inset of Fig. 2b). Obviously,

the circuit model of independent resistances cannot be

adequate to such a discrete transport. In fact, the pro-

cess in question is a close analogue of the transport in

a vacuum tube: the vacancy/electron is injected with

the Poissonian statistics and moves freely towards the

source/drain, which gives rise to F = 1. It is straight-

forward to understand what happens if we increase ΓH .

The injection rate increases, unlike the average dwell

time in the chain Tdwell =
∑

(Γi)
−1, where the summa-

tion is performed over the sites on the left or right hand

side from the hard hop, respectively, for the vacancies

or the electrons. Hence, the average occupation prob-

abilities are given by ρ = 2ΓHTdwell/N . In the finite-

size regime in our experiment N ∼ 10 and the rates

Γi ∝ exp (−ξi) are described by the VRH theory [9], so

that ρ ∼ 0.1. Small occupation probabilities indicate in-

dependent motion of the electrons/vacancies, therefore

the above analogy with the vacuum tube should hold

and one expects the Poissonian shot noise.

The vacuum tube analogy can be supported by a

purely classical model of Refs. [24], which has been used

for modeling the shot noise in the VRH regime [13].
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Refs. [24] consider a so-called open boundary asymmet-

ric exclusion process (ASEP), which describes a hop-

ping of particles on a uniform 1D lattice. The hop-

ping is allowed in one direction, unless the neighboring

site is occupied. Remarkably, the current fluctuations

in this model do not necessary average out in an arbi-

trary long lattice, unlike in calculations of Refs. [14, 15].

Moreover, in the regimes of low/high density the ex-

act solution for the Fano factor reads F = 1 − 2ρ,

where ρ < 1/2 is, respectively, the occupation proba-

bility of particles/vacancies [24]. In both cases, the sub-

Poissonian noise suppression is a result of negative on-

site correlations. If, however, ρ → 0 the correlations are

unimportant and the noise becomes Poissonian, just like

in the original Schottky’s problem [13]. Formally, our

estimate of ρ ∼ 0.1 in the VRH regime corresponds to

F ≈ 0.8, much closer to the experiment. This indicates

that the classical approach is a promising framework to

understand the shot noise in the VRH conduction.

In summary, we investigated the shot noise in a

macroscopic VRH insulator based on a 2D electron sys-

tem in GaAs. At low T and strong enough depletion the

shot noise close to the full Poissonian value (F = 1±0.1)

is observed, which is interpreted as a manifestation of

the finite-size effect. We propose a simplified classical

approach capable to explain this result and apparently

consistent with the VRH conduction theory. Our results

call for revision of shot noise theory in the VRH conduc-

tion and open up a possibility for accurate quasiparticle

charge measurements in nontrivial many-body insulat-

ing states [4–7].
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