Орбитальное квантование в системе краевых дираковских фермионов в наноперфорированном графене

Ю. И. Латышев^{*a*}, А. П. Орлов^{*a*}, А. В. Фролов^{*ab*}, В. А. Волков^{*ab*}, И. В. Загороднев^{*a*}, В. А. Скуратов^{*c*}, Ю. В. Петров^{*d*}, О. Ф. Вывенко^{*d*}, Д. Ю. Иванов^{*e*}, М. Конзиковски^{*f*}¹), П. Монсеау^{*g*}¹)

^а Институт радиотехники и электроники им. Котельникова РАН, 125009 Москва, Россия

^b Московский физико-технический институт, 141700 Долгопрудный, Россия

 c Объединенный институт ядерных исследований, 14
1980 Дубна, Россия

^d Междисциплинарный ресурсный центр по направлению "Нанотехнологии", С.-Петербургский государственный университет, 198504 С.-Петербург, Россия

^еИнститут проблем технологии микроэлектроники и особочистых материалов РАН, 142432 Черноголовка, Россия

 $^f Ecole Polytechnique, 91128$ Palaiseau, Cedex France

^gInstitut Neel, CNRS/UJF, UPR2940, 38042 Grenoble, Cedex 9, France

Поступила в редакцию 10 июля 2013 г.

Исследованы зависимости электросопротивления R наноперфорированных образцов графена от положения уровня Ферми $E_{\rm F}$, которое изменялось с помощью напряжения на затворе V_g . Наноперфорация проводилась с помощью облучения образцов графена на подложке Si/SiO₂ либо тяжелыми (ксенон), либо легкими (гелий) ионами. При низких температурах в отсутствие магнитного поля на зависимости $R(V_g)$ обнаружена серия регулярных пиков. Пики связываются с прохождением E_F через эквидистантную лестницу уровней, образованных орбитально-квантованными состояниями краевых дираковских фермионов (ДФ), вращающихся вокруг каждого наноотверстия. Результаты согласуются с теорией краевых состояний для безмассовых ДФ.

DOI: 10.7868/S0370274X13160066

1. Введение. Спустя почти десятилетие с момента получения графена [1, 2] не ослабевает интерес к исследованию его необычных свойств, обусловленных наличием в нем безмассовых дираковских фермионов (ДФ). К таковым относится теоретическая возможность существования в графене краевых состояний [3–5]. Одним из первых указаний на проявление подобных состояний в транспортных измерениях явилось обнаружение магнитоосцилляций сопротивления типа Ааронова-Бома в перфорированных образцах тонкого графита [6] и графена [7] в очень сильных магнитных полях. В отсутствие магнитного поля краевые ДФ, если они существуют, должны двигаться в узком эффективном кольце вокруг каждого наноотверстия. Конечность периметра отверстия и периодичность движения должны приводить к орбитальному квантованию энергии краевых ДФ, подобно тому как это происходит с электронами в атоме Бора. Цель настоящей работы – обнаружить уровни орбитального квантования краевых Д Φ в образцах графена с наноотверстиями с помощью развертки напряжения V_g на управляющем электроде (затворе).

2. Образцы. Измерялось сопротивление образцов графена на оксидированной подложке высоколегированного кремния Si/SiO₂ с толщиной слоя оксида d = 300 нм. Исследовались как образцы графена, переданные из Манчестерского университета (Graphene Industries Co), так и собственные образцы, которые получались механическим отщеплением от монокристаллов естественного графита с помощью адгезионной ленты с последующим переносом на подложку. Наноотверстия создавались двумя способами: облучением тяжелыми ионами (Xe⁺²⁶) с энергией 167 МэВ на циклотроне ИЩ-100 в лаборатории ядерных реакций ОИЯИ и облучением ионами гелия на гелиевом ионном микроскопе ORION в СПбГУ.

В первом случае образуется ансамбль случайно распределенных колоннообразных дефектов. Для

¹⁾M. Konczykowski, P. Monceau.

Рис. 1. Изображение образца графена на подложке Si/SiO₂, облученного тяжелыми ионами. (a) – Оптическое изображение. (b) – Изображение, полученное с помощью сканирующего атомно-силового микроскопа в режиме фазового контраста масштаб 1 мкм

Рис. 2. Зависимости электросопротивления контрольного образца графена (a) и графена с колоннообразными дефектами (b) от затворного напряжения (образец 3, см. рис. 1b). Вертикальной прямой отмечено напряжение, соответствующее дираковской точке. Основная серия максимумов отмечена стрелками

электронов в графене каждый дефект эквивалентен появлению одного наноотверстия. Оценка диаметра наноотверстий D с использованием атомно-силового микроскопа (рис. 1b) (а также сканирующего электронного микроскопа) дала значение $D \approx 10$ нм. Колоннообразные дефекты идентифицировались по бугоркам (hillocks) выдавленного из них аморфного вещества [8]. Их средняя концентрация соответствовала флюенсу ионов ксенона $3 \cdot 10^9 \, \text{см}^{-2}$. Во втором случае облучение графена ионами гелия с диаметром пучка 1-2 нм приводило к образованию решетки наноотверстий диаметром $D \approx 2$ нм при их плотности 2 $\cdot \; 10^{11} \, {\rm cm}^{-2}.$ При этом сопротивление образца увеличивалось в 20 раз, поскольку длина свободного пробега носителей уменьшалась с 300-500 нм до размеров порядка периода решетки (≈ 20 нм). Электрические контакты наносились с помощью лазерного напыления золота и имели контактное сопротивление порядка 100 Ом.

3. Эксперимент. Измерения проводились в криогенной вставке с обменным газом при фиксированной температуре в интервале 1.8-100 К. В измерительную схему образцы графена с управляющим электродом включались по схеме полевого транзистора с общим истоком. Напряжение на затворе разворачивалось с помощью контролируемого компьютером источника-измерителя Keithley 2400 со скоростью не больше 1 B/с с контролем тока через затвор. Сопротивление образца измерялось на слабом постоянном или переменном токе (0.1–10 мкА). При этом самый маленький измерительный ток более чем в 10^3 раз превышал ток утечки с затвора в образец. Для измерения постоянного напряжения использовался нановольтметр Keithley 2182, а для измерения переменного – двухфазный синхронный усилитель SR 530. Зависимости $R(V_g)$ обычно снимались дважды: сначала при возрастании V_g , а затем при его убывании, при обеих полярностях V_g . Измерения в сильных магнитных полях проводились в Европейской лаборатории сильных магнитных полей (EMFL) в г. Гренобле.

На рис. 2а показана зависимость $R(V_g)$ для контрольного (неперфорированного) образца графена. Она имеет максимум в дираковской точке, смещенный в положительную область напряжений на затворе приблизительно на 6 В, что обычно связано с адсорбцией паров воды. Поэтому при $V_g = 0$ все образцы обладают дырочной проводимостью с концентрацией дырок порядка 10^{12} см⁻² при подвижности $(1-5) \cdot 10^3$ см²/(В · с).

На образцах графена с колоннообразными дефектами, полученными в Дубне, в сопротивлении $R(V_g)$ появляется серия пиков (см. рис. 2b). Ограничимся обсуждением только наиболее сильных пиков (основная серия). Похожие пики проявляются также в более "грязных" структурах с решеткой наноотверстий, полученных в СПбГУ с помощью гелиевого ионного микроскопа (рис. 3). Особенности в последнем случае

Рис. 3. Зависимость сопротивления графена с наноперфорацией, полученной с помощью гелиевого ионного микроскопа, от затворного напряжения (образец 1). Стрелками показаны положения особенностей в сопротивлении. Особенности проявляются ярче в магнитном поле 20 Тл

относительно слабы. Однако они резко усиливаются под действием магнитного поля (20 Тл), при котором магнитная длина становится соизмеримой с периметром наноотверстия. Во всех образцах регулярная серия таких пиков прослеживается только на той ветви зависимости $R(V_g)$, которая соответствует дырочной проводимости.

Обратим внимание на универсальную закономерность для основной серии пиков на кривой $R(V_g)$: для образцов обоих типов положение N-го пика, отсчитанного от точки Дирака, пропорционально N^2 (рис. 4).

Рис. 4. Зависимость положения пиков V_{gN} , отмеченных стрелками на рис. 2 и 3, от квадрата их номера *N*. Затворное напряжение V_g отсчитывалось от дираковской точки. Данные получены на образце 3, облученном тяжелыми ионами (кружки, правая шкала), и образце 1, облученном ионами гелия (крестики, левая шкала). Масштабы на левой и правой шкалах отличаются в 20 раз

4. Сравнение с теорией. Впервые спектр поверхностных состояний для массивных дираковских электронов на полупространстве был получен еще в работе [9] (см. также обзор [10]). Граница образца характеризуется единственным феноменологическим параметром a, который входит в граничное условие для огибающих функций и описывает электронное строение поверхности на атомных масштабах. В безмассовом пределе зависимость энергии поверхностных состояний от двумерной тангенциальной компоненты импульса \mathbf{k}_{\parallel} имеет вид

$$E = 2\hbar a v_{\rm F} s |\mathbf{k}_{\parallel}|. \tag{1}$$

Здесь $v_{\rm F}$ – эффективная "скорость света" в уравнении Дирака, а параметр *а* для простоты считается малым ($|a| \ll 1$). "Спиновое" число $s = \pm 1$ является собственным значением оператора киральности, в данном случае пропорционального смешанному про-изведению векторов спина, нормали и \mathbf{k}_{\parallel} .

В графене роль спина играет долинная степень свободы, а роль поверхности – край образца. Простейшую теорию краевых состояний безмассовых ДФ в полубесконечном графене можно построить в

245

пренебрежении междолинным взаимодействием. Результат при $|a| \ll 1$ описывается формулой (1) с точностью до обозначений: ветви одномерного тангенциального импульса $k_{\parallel} > 0$ и $k_{\parallel} < 0$ отвечают разным долинным квантовым числам $s = \pm 1$ [5, 11, 12]. Микроскопический расчет граничного (в данном случае краевого) параметра a – очень сложная и на практике плохо определенная задача. Отметим лишь, что конечность величины a приводит к асимметрии спектра (1). Последнее можно понять в модели "инверсного гетероконтакта" [13]. В этой модели асимметрия спектра возникает при учете изменения работы выхода на контакте (см. ссылки в обзоре [10]). Будем определять параметр a из сравнения с экспериментом.

Краевые ДФ движутся вдоль линейного края со скоростью $v_{edge} = 2av_F$, которая при $|a| \ll 1$ много меньше фермиевской. В случае наноотверстия край является замкнутым и краевые носители крутятся вокруг отверстия по или против часовой стрелки (в зависимости от номера долины). Будем считать, что край однороден, т.е. параметр *a* не изменяется при движении вдоль края. Тогда орбитальное квантование тангенциального движения приводит к тому, что спектр (1) становится дискретным, точнее квазидискретным (см. рис. 5). Фермионы в краевых состояни-

Рис. 5. Зависимость энергии ДФ от тангенциальной компоненты импульса k_{\parallel} в графене с отверстием диаметра D в схеме совмещенных долин. Квазиклассическое орбитальное квантование $k_{\parallel} = 2N/D$ с учетом извлеченного из эксперимента знака краевого параметра a приводит к появлению лестницы краевых уровней дырочного типа (см. (2)). Заселяющие эту лестницу краевые ДФ вращаются вокруг отверстия по или против часовой стрелки в левой (точки) или правой (крестики) долинах соответственно. Затемненная область – континуум объемных состояний

ях имеют конечное время жизни, связанное с несохранением тангенциальной компоненты импульса и

Письма в ЖЭТФ том 98 вып. 3-4 2013

уходом Д
Ф из края в континуум объемных состояний.

Пренебрегая распадом краевых состояний, можно получить простое выражение для *N*-го уровня энергии краевого состояния, двукратно вырожденного по номеру долины и двукратно по настоящему спину:

$$E_N = 4\hbar a v_{\rm F} N/D. \tag{2}$$

Здесь использовано квазиклассическое условие орбитального квантования: $\pi D = 2\pi N/k_{\parallel}$, а $N = 1, 2, \ldots$. В этом приближении спектр (2) эквидистантен. Положение уровня Ферми в графене связано с концентрацией носителей $n = V_g \varepsilon_0 \varepsilon/ed$ известным для безмассовых ДФ образом: $E_{\rm F} = \hbar v_{\rm F} (\pi n)^{1/2}$. Здесь d и ε – толщина и диэлектрическая проницаемость слоя оксида кремния, на котором лежит графен. В результате получаем выражение для напряжения на затворе V_{gN} , отвечающего резонансному условию $E_{\rm F} = E_N$:

$$V_{qN} = (16a^2 ed/\pi\varepsilon_0\varepsilon)(N/D)^2.$$
 (3)

Наноперфорацию можно рассматривать как введение дополнительных рассеивателей для объемных ДФ. Логично предположить, что условие $E_{\rm F} = E_N$ сопровождается резонансным рассеянием носителей на наноотверстиях, что и приводит к пикам в сопротивлении образца.

Выражение (3) согласуется с экспериментом. Положение пиков V_{gN} действительно пропорционально N^2 . Более того, тангенс угла наклона прямой линии $V_{gN}(N^2)$ на рис. 5 должен быть обратно пропорционален D^2 в предположении неизменности параметра a для образцов разного диаметра. Это также согласуется с экспериментом в пределах ошибки. Действительно, для двух образцов с диаметрами наноотверстий 10 и 2 нм наклон прямых $V_{gN}(N^2)$ отличается в 20 раз, тогда как отношение квадратов диаметров составляет величину $25 \pm 30\%$.

По наклону зависимости $V_{gN}(N^2)$ из сравнения с выражением (3) можно найти параметр *a*. Он оказался равным $|a| \approx 0.07$ с точностью 30%, определяемой точностью измерения диаметра *D*. Эта величина количественно согласуется со значением, полученным из магнитосцинцилляций сопротивления на наноперфорированных образцах тонкого графита [14]. Из того факта, что серия пиков наблюдается на дырочной части кривой $R(V_g)$, следует, что параметр *a* отрицателен. Следовательно, краевые ДФ, по всей видимости, являются дырками.

Для образцов с диаметром отверстий 10 нм энергия первого уровня E_1 и расстояние между уровнями составляют 17.5 мВ. Пики размываются с ростом температуры и исчезают при температуре около 60 К, соответствующей условию $E_1 \sim 3kT$. Пики также размываются при низких температурах с ростом измерительного тока. Это наблюдается, когда латеральное напряжение на образце при больших токах сравнивается с E_1/e .

5. Выводы. Таким образом, на зависимости сопротивления перфорированного графена от напряжения на затворе при низких температурах обнаружена серия регулярных пиков, несимметрично расположенных по отношению к точке Дирака. Положение N-го пика V_{qN} , отсчитанное от напряжения, соответствующего дираковской точке, пропорционально N^2 . Извлеченная из наклона этой прямой скорость краевых носителей на порядок меньше скорости объемных ДФ. Эффект связывается с квантованием орбитального движения краевых ДФ вокруг наноотверстия. В результате на каждом из них образуется эквидистантная лестница квазидискретных уровней краевых ДФ. При развертке напряжения на затворе уровень Ферми последовательно пересекает уровни этой лестницы, что и приводит к пикам сопротивления. Из сравнения с теорией краевых состояний в графене [5] извлечено значение единственного феноменологического параметра теории ($a \approx -0.07$).

Работа поддерживалась грантами РФФИ # 11-02-01379-а, 11-02-01290-а, 11-02-121687-оfi-m-2011, грантом Минобрнауки (соглашение # 8033), программами РАН и Европейской комиссией 7-й рамочной программы "Transnational Access" (контакт # 228043-Euromagnet II-Integrated Activities).

- K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science **306**, 666 (2004).
- K. S. Novoselov, A. K. Geim, S. V. Morozov et al., Nature 438, 197 (2005).
- K. Nakada, M. Fujita, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
- A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. B 77, 085423 (2008).
- V. A. Volkov and I. V. Zagorodnev, Low Temp. Phys. 35, 2 (2009).
- Ю. И. Латышев, А. Ю. Латышев, А. П. Орлов и др., Письма в ЖЭТФ 90, 526 (2009).
- Yu. I. Latyshev, A. P. Orlov, E. G. Shustin et al., Journ. of Phys.: Conf. Series 248, 012001 (2010).
- V. A. Skuratov, S. J. Zinkle, A. E. Efimov et al., Nucl. Instr. And Meth. B 203, 136 (2003).
- 9. В. А. Волков, Т. Н. Пинскер, ФТТ **23**, 1756 (1981).
- Б. А. Волков, Б. Г. Идлис, М. Ш. Усманов, УФН 165, 799 (1995).
- G. Tkachov and M. Hentschel, European Physical Journal B 69, 499 (2009).
- J. A. M. van Ostaay, A. R. Akhmerov, C. W. J. Beenakker, and M. Wimmer, Phys. Rev. B 84, 195434 (2011).
- Б. А. Волков, О. А. Панкратов, Письма в ЖЭТФ 42, 145 (1985).
- 14. Y. Latyshev, A. Orlov, V. Volkov, and P. Monceau, Quantum interference effect in nano-perforated graphene and thin graphite. Book of abstracts of the International Conference of High Magnetic Fields in Semiconductor Physics (HMF-20), July 22–27, 2012, Chamonix Mont-Blanc, France.