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We study theoretically helical edge states of 2D and 3D topological insulators (TI) tunnel-coupled to metal

leads and show that their transport properties are strongly affected by contacts as the latter play a role of a

heat bath and induce damping and relaxation of electrons in the helical states of TI. A simple structure that

produces a pure spin current in the external circuit is proposed. The current and spin current delivered to the

external circuit depend on relation between characteristic lengths: damping length due to tunneling, contact

length and, in case of 3D TI, mean free path and spin relaxation length caused by momentum scattering. If

the damping length due to tunneling is the smallest one, then the electric and spin currents are proportional

to the conductance quantum in 2D TI, and to the conductance quantum multiplied by the ratio of the contact

width to the Fermi wavelength in 3D TI.
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Spin properties of edge and surface states of topo-
logical insulators (TI) are of great interest both for fun-
damental physics and for potential applications in spin-
tronics [1]. The spin of electrons is strongly coupled to
their momentum giving an idea of generating spin po-
larized currents in TI [2–4]. However, it would be in-
teresting and of practical importance to generate not
only spin polarized currents but pure spin currents as
well. The general idea for generating pure spin current
was suggested in Ref. [5]: a Y -shaped two-dimensional
conductor forming a three-terminal junction with in-
trinsic spin-orbit interaction was proposed, where one
of the terminals is a voltage probe which draws no elec-
tric current, but the polarizations of incoming and out-
coming electrons are opposite to each other, causing
a pure spin current. However, the particular realiza-
tion of this system does not relate to TI. An example
of a multiterminal system involving the edge state of
TI, in which a pure spin current in the external cir-
cuit may occur is given in Ref. [6]. However, the de-
coherence and damping induced by contacts were out
of consideration, while we find that damping and re-
laxation induced by coupling to a metallic contact are
very important. The systems for generating a pure spin
current suggested in Refs. [5, 6] were mesoscopic and
ballistic. It is interesting to study a possibility to pro-
duce a pure spin current also in a 3D TI where the spin
current can be larger as it is proportional to geomet-
rical dimensions of the sample. In the helical surface
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state of 3D TI the physics is more complicated because
a finite angle impurity scattering is not prohibited by
momentum-spin locking and strongly affects transport
properties.

In this paper we study an edge state in a 2D TI and
a surface state in 3D TI coupled to metallic leads by
tunnel contacts, take into account decoherence due to
exchange of electrons with the lead and due to impurity
scattering in 3D TI, and calculate charge and spin cur-
rents in the external circuit. A distinctive feature of our
approach is that we take into account the decoherence
induced by the contacts and show that it determines
the electric and spin currents in the TI with contacts.
We find that the currents strongly depend on relations
between the characteristic lengths: the damping length
due to tunneling, the length of the contact and the mean
free path.

Below we set e, ~, and kB to unity, restoring dimen-
sional units in final expressions when necessary.

We consider a TI with a conducting helical state cou-
pled by tunnel contacts to bulky leads (Figure) made of
normal metal. The effects we study can be observed in
various realizations but we consider the simplest three-
terminal version when one of the leads is grounded, and
the voltage V is symmetrically applied to the two other
leads. We examine a 2D TI with the helical edge state
(Fig. a) and a 3D TI cylinder with a conducting surface
state (Fig. b). We denote the length of the tunnel con-
tact to the grounded lead by l0, while l1 and l2 stand for
the lengths of the contacts to the leads with potentials
V± = ±V/2.
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(a) – Helical edge state of 2D TI coupled to the leads. (b) –

Helical surface state of 3D TI coupled to the leads

The total Hamiltonian reads

Ĥ = ĤTI +
∑

i=1,2,3

Ĥlead,i + Ĥtun,i. (1)

Here Ĥlead,i is the Hamiltonian of the i-th lead, ĤTI is
the Hamiltonian of the conducting state in TI. For the
edge state [7–9]

Ĥ
(edge)
TI =

∫

dxΨ̂†(x) (−iσzvF∂x − εF) Ψ̂(x), (2)

where vF is the velocity of the excitations, Ψ̂ is a two-
component spinor and σ are the Pauli matrices. We do
not take into account impurity scattering in the 2D case,
since spin-momentum locking prohibits such a scatter-
ing. For the surface state the Hamiltonian reads in the
simplest case [8, 9]

Ĥ
(surf)
TI =

∫

d2r Ψ̂†(r) [(−ivF∂r × ez · σ)− εF +

+ Vimp(r)] Ψ̂(r), (3)

where ez is a unit vector perpendicular to the surface,
Vimp is a random potential of impurities, and we assume

that it is delta-correlated V (r)V (r′) = u0δ(r− r
′).

The tunnel Hamiltonian Ĥtun reads

Ĥtun =

∫

d3RdDr ψ̂†(R)T (R, r)Ψ̂(r) + h.c., (4)

where dimension D = 1 for the edge state and D = 2
for the surface state; ψ̂(R) is the field operator in a
lead, the matrix element T (R, r) describes tunneling
between the lead and TI. We assume a site-to-site tun-
nelling which does not conserve momentum, T (R, r) =
= td(3−D)/2δ(R‖ − r)δ(R⊥), where t is real and does
not depend on r, and δ(R⊥) selects an average value of
a function at a distance d of the order of inter-atomic
scale near the surface.

First, we focus on the helical edge state coupled by
tunnel contacts to the leads (Figure). We start from the

Hamiltonian (1), (2), (4), and then derive equations for
Keldysh matrices [10]

Ǧ =

(

GR GK

0 GA

)

, Σ̌tun =

(

ΣR ΣK

0 ΣA

)

,

where GR,K,A are Green functions of the edge state,
Σtun is a self energy describing tunneling from a lead
to the edge state. Deriving an expression for self energy
we follow Kopnin and Melnikov [11]. For details one can
also refer to Ref. [12], where the self energy was derived
for helical states tunnel-coupled to a superconductor.
Finally, we obtain Σtun(x, x

′) = Σδ(x− x′), where

Σ̌ = iΓ

(

−1 −2 tanh
ε

2T
0 1

)

. (5)

Here we introduce the tunnelling rate Γ ≃ πν3d
3t2 ∼

∼ t2/εF, ν3 = mpF/(2π
2
~
3) is the 3D density of states.

The Dyson equation for the Green functions Ǧ reads

(

ε+ εF + iσzvF∂x − Σ̌
)

Ǧ(x, x′) = δ(x− x′). (6)

The left-right subtracted Dyson equation for GK(x, x)
can be reduced to a kinetic equation for distribution
function f by ansatz GK = (GR −GA)(1 − 2f)

σzvF∂xf = −γ(x)(f − fi), (7)

where γ = 2Γ/vF is the inverse damping length due to
tunneling, fi = f0(ε−Vi) is the equilibrium distribution
function in the i-th lead.

Solving (6) for retarded and advanced components
we obtain GR − GA = −2πiN (ε) where N (ε) is the
density-of-states,

N (ε) =
sinh γl/2

2πv[cosh γl/2− cos (kFL+ εL/vF)]
, (8)

where l = l0 + l1 + l2 and L is the circumference
of the edge state. In the limit γl → ∞ we obtain
N (ε) → 1/(2πv), and in the limit of small γl N (ε) →
→ 1

2v δ[sin (ε+ EF)L/2v].
The solution of (7) can be represented as a sum of

equilibrium and non-equilibrium terms f = f0 + δf .
Non-equilibrium term at the region 0 < x < l0 coupled
to the grounded lead reads

δf =
δf2 + [δf1 − δf2] e

−γσzl2 − δf1e
−γσz(l1+l2)

(1− e−γσzl) eγσzx
, (9)

where δfi = f0(ε − Vi) − f0(ε). The charge current
flowing through the edge state is related to the non-
equilibrium part of the Keldysh Green function GK

ne

by Ie = i
2evFTr σzG

K
ne. Spin current reads Js = vFρ,

where ρ is a linear density of electrons related to the
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Keldysh Green function and a local shift of a chemi-
cal potential µ by equation ρ = eµ/(πvF) −

i
2Tr G

K
ne.

The local shift of a chemical potential µ is due to vari-
ation of electron density and obeys the Poisson equa-
tion

(

∂2x + ∂2⊥
)

µ = −4πeρδ (r⊥). Finally, we obtain
Js(x) ∼ vF

(

− i
2Tr G

K
ne

)

/(1+α), α = ae2/(ǫ~vF), where
a ∼ 1 depends on the specific geometry, and ǫ is an am-
bient dielectric constant.

The spin current flowing through the grounded lead
can be calculated as the difference of the spin currents
in the edge state of TI at the endings of the contact
Js = Js(x = 0)− Js(x = l0). Its derivative with respect
to the applied voltage at low temperatures T ≪ ~vF/L
reads

dJs
dV

=
G0

e

4πvF sinh(γl0/2) sinh(γl1/2) sinh(γl2/2)

(1 + α) sinh(γl/2)
×

×

[

N

(

V

2

)

+N

(

−
V

2

)]

,

where G0 = e2/h is the conductance quantum, and the
density of states N is determined by Eq. (8). Here and
below a spin current is measured in units of ~/2. In the
limit of high temperatures T > ~vF/L the oscillations
are washed out, and the term in the square brackets
should be substituted by 1/(πvF).

The electric current flowing through the grounded
lead I = Ie(x = 0)−Ie(x = l0) at low temperatures and
in case of symmetrical geometry l1 = l2 is determined
by conductance

dI

dV
= G0

πvF sinh(γl0/2) sinh γl1 sinh(γl2/2)

sinh(γl/2)
×

×

[

N

(

V

2

)

−N

(

−
V

2

)]

that oscillates with the voltage and the Fermi level po-
sition (the latter can be varied by the gate voltage). At
high temperatures T > ~vF/L and in the limit of large
damping, γli ≫ 1, this term vanishes resulting in a pure
spin current through the grounded lead.

It is instructive to consider an incoherent case γli ≫
≫ 1 in more details. In this case the non-equilibrium
part of the electronic distribution at the region coupled
to the grounded lead is reduced to

δf =

(

δf2e
−γx 0

0 δf1e
γ(l0−x)

)

. (10)

Thus, due to the spin-momentum locking, the distribu-
tion of spin-up electrons at x = 0 is determined by the
heat bath coupled to the region x < 0, and the distri-
bution of spin-down electrons at x = l0 is determined
by the heat bath coupled to the region x > l0. The
spin current reads Js = [1 + α]−1 G0

e V and the electric

current equals zero, independent on the lengths of the
contacts.

It is interesting that the electric current between the
leads connected to a voltage source in the considered
three-terminal structure equals I = 3

2G0V , and is dif-
ferent from the current in a two-terminal setup. In the
latter case we find for the system with two tunneling
contacts the same result I = 2G0V as in case of ballis-
tic quantum wire attached to ideal adiabatic contacts.

Now we consider a surface state of a 3D TI tunnel-
coupled to the leads (Fig. b). The Hamiltonian is given
by (1), (3), (4). We assume that the contacts are placed
on the (111) plane – in this case Pauli matrices in the
Hamiltonian (3) coincide with the electron’s spin oper-
ator [13]. The Dyson equation reads

[

i∂t + εF + ivF (∂yσx − ∂xσy)− Σ̌tun − Σ̌imp

]

Ǧ(r, r′) =

= δ(r− r
′).

The self-energy for impurities Σ̌imp = −iτ−1〈ǧ〉, where
τ−1 = πν2u

2, ν2 = pF/(2π~
2vF) is the single-particle

density of states at the Fermi energy and 〈ǧ〉 is the av-
erage over the momentum direction of the quasiclassical
Green function given by definition ǧ = i

π

∫

Ǧdξ. Simi-
larly to the case of tunneling into the edge state, the
self-energy Σ̌(r, r′) = Σ̌(r)δ(r − r

′), and Σ̌(r) is given
by (5). The electron transport is determined by an in-
terplay between three characteristic scales: the lengths
of tunnel contact li, the damping length due to tunnel
contacts vF/Γ, and the momentum and spin relaxation
length vFτ due to impurity scattering. We focus on the
case when the dimensions of the sample are larger than
the mean free path and the dimensional quantization
can be ignored. We follow Ref. [14] and obtain the ki-
netic equation for the distribution function f

∂tf+vF (n,∇) f = −
f − 〈f〉 − (n, 〈fn〉)

τ
−2Γ(x)(f−fi).

(11)
The distribution function f yields the quasiclassical
Keldysh Green function by relation

gK = (gR − gA)(1 − 2f) = (1 + nyσx − nxσy) (1− 2f).

We represent the distribution function as a sum of
isotropic and anisotropic terms, expanding angular de-
pendence to the first harmonics f ≈ 〈f〉+ fxnx + fyny,
and the term with ny vanishes due to translational sym-
metry along the y-axis. The electron and current density
read

ρ =
ν2
2

∫

〈f〉dε+ ν2µ, j =
vFν2
2

∫

fxdε.

Following Ref. [14] and taking into account a local shift
of a chemical potential one can obtain from the kinetic
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equation (11) the continuity equation with the source
describing tunneling, and the expression for the electric
current

∂tρ+ ∂xj = 2Γ(x) [ρ− ν2(µ− Vi)] , (12)

j = σE +D∂xρ, (13)

where Vi is a potential applied to the lead, D =
= v2Fτ/(1 + 4Γτ), σ = e2vFpF/[2π(τ

−1 + 4Γ − 2iω)].
The spin current density in the TI reads

js = vF
ρ

2
. (14)

However, spin relaxation due to scattering on impuri-
ties results in non-conservation of the spin current, and
unlike the case of the edge state we cannot calculate the
spin current flowing through the lead as the difference
of the spin currents in the surface state of TI at the
endings of the contact unless the contact length l0 is
shorter than the mean free path τvF. Thus, in order to
calculate the spin current through the lead we use the
continuity equation in the lead [14]

∂tρ
(lead)
s (x, y) + div j

(lead)
s (x, y) =

= Γ′(x)δ(z)ρ
(lead)
s (x, y) + 2v−1

F Γ(x)j
(TI)
e (x, y)δ(z), (15)

where Γ′ = Γν2/ν3, ρs and js are spin and spin cur-

rent densities in the lead, j
(TI)
e is particle current den-

sity in the TI. The term with ρs in the right-hand side
vanishes in the leading approximation. Integrating (15)
over space allows us to relate the spin current in the
lead with the electric current in the TI

Js =
1

vF

∫

2Γj(TI)
e dxdy. (16)

Note that in the limiting case τ−1 ≪ Γ according
to (13), (14) expression (16) is reduced to the differ-
ence of the spin currents in the surface state of TI at
the endings of the contact.

Now it is straightforward to calculate the spin cur-
rent through the grounded lead using equations (12),
(13) and demanding continuity of particle and current
densities at the boundaries of the contacts. The result
has especially simple form when vF/Γ ≪ li:

Js =
G0

e
kFLy

1

[4 + (Γτ)−1] (1 + slD)
eV,

where s is a spacing between contacts, lD =
√

D/(8Γ)
is a diffusion length.

The electric current through the grounded lead
equals zero. If the mean free path τvF is greater than
the damping length due to tunneling vF/Γ then impu-
rity scattering and corresponding spin relaxation do not
affect spin current.

To summarize, we have proposed a system based on
the 2D/3D TI which injects pure spin current into an
external circuit. We have found that charge and spin
transport is strongly affected by contacts connecting
the TI to bulky leads which play a role of a heat bath.
If the tunneling rate is large enough so that the ex-
change of electrons between the TI and the lead is in-
tensive enough, the distribution functions of the elec-
trons that passed the contact are determined by the
Fermi distribution in the lead shifted by the applied
voltage. This is somewhat similar to the case of quan-
tum wire connected to the leads by ideal contacts, and
similarly to the quantum wires yields electric and spin
currents through a 1D channel being proportional to the
conductance quantum. In case of 2D conducting region
the current through the width of the order of the Fermi
wavelength is proportional to the conductance quantum.
Thus the conductance does not depend on the transmis-
sion of the contact if the tunnel coupling is not too weak,
and the contact behaves as if it is nearly ideal. Though
formally our results are valid in the tunneling limit only,
we believe that they provide a qualitative description of
the transport for any contacts.
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