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Molecular dynamics simulation of chains mobility in polyethylene
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The mobility of polymer chains in perfect polyethylene crystal was calculated as a function of temperature

and chain length through Molecular dynamics in united atom approximation. The results demonstrate that

the chain mobility drastically increases in the vicinity of the phase transition from the orthorhombic to quasi-

hexagonal phase. In the quasi-hexagonal phase, the chain mobility is almost independent on temperature and

inversely proportional to the chain length.
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Mechanical properties of semi-crystalline polymers

below the melting temperature are strongly governed by

morphology of crystallites that depends on how the melt

was prepared and treated. Polymer crystallites can un-

dergo a variety of structural phase transitions that is a

subject of extensive studies. Polyethylene (PE) is widely

used as a “model system” for high-crystallinity polymer

[1]. At normal conditions (room temperature and atmo-

spheric pressure), the PE crystal is in orthorhombic [2]

or monoclinic phase [3]. The PE crystals undergo phase

transition to quasi-hexagonal phase at elevated pressure

(more than 400 MPa) and temperature (> 520K) [4–6].

Quasi-hexagonal phase has been found in numerous

diverse polymeric systems [7]. One common property of

the quasi-hexagonal polymeric phase is some degree of

conformational disorder, either in the main chain or in

the side groups or in both. Compared with the ordered

crystalline state, there is a high degree of molecular mo-

bility, with the chain performing both rotational and

translational motion. Translational chain mobility en-

ables easy formation of extended chain crystals in poly-

mers that exhibit the quasi-hexagonal phase; isother-

mal extension of the initially folded chains has been

shown to occur in the quasi-hexagonal phase [7]. The PE

chains in both monoclinic and quasi-hexagonal crystals

are parallel to each other. However, the monomers of the

chain in monoclinic phase predominantly belong to the

same plane, while the monomers of the chain in quasi-

hexagonal phase are randomly oriented. Therefore, the
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chains in quasi-hexagonal phase form close packing of

rods [7].

Diffusion rate of PE chains in quasi-hexagonal phase

was measured experimentally in Ref. [6] using proton

spin-lattice relaxation experiments and significant in-

crease in the rate of chain diffusion from about 10−12

(orthorhombic phase) to 10−9 cm2/s (quasi-hexagonal

phase) was observed. The molecular dynamics model-

ing and understanding of the atomistic mechanisms of

high chains mobility in the quasi-hexagonal phase is the

purpose of the current work.

The LAMMPS software package [8] was utilized for

molecular dynamics simulations. Polyethylene chains

were modeled in united atom version of Dreiding force-

field [9]. The Nose–Hoover style thermostat and baro-

stat were used in these calculations [10]. The modeled

samples were comprised of 64 polyethylene chains with

36, 100, and 200 carbon atoms in each chain. The simu-

lations were performed in periodic boundary conditions

in all directions. The chains were made “infinite” via

binding the last carbon atom of each chain with the first

carbon atom of the closest image of the same chain in

c-direction. We used orthorhombic phase of PE crystal

as an initial state of our simulations. The front and side

views of the initial configuration of the modeled sam-

ple with 100 carbon atoms in each chain are shown in

Fig. 1a. After initial geometrical optimization of the sys-

tem, the Molecular dynamics (MD) trajectory was run

in NPT ensemble. We use below the relative temper-

ature, τ , normalized by the Lennard-Jones interaction

constant, ε; τ = T/ε.
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Fig. 1. Crystalline sample. (a) – Orthorhombic phase, τ =

0. (b) – Monoclinic phase, τ = 3, t = 1ns. (c) – quasi-

hexagonal phase, τ = 5, t = 1ns

Although we started from the orthorhombic phase,

the transition into the monoclinic phase occurred within

50 ps from start of MD simulation at the temperatures

below τ = 4.5. The snapshot (front and side view) of

the sample configuration at temperature τ = 3 and time

t = 1 ns after initial time moment is shown in Fig. 1b.

The monomers of individual chains predominantly be-

long to one plane. Thermal motion results in fluctua-

tions of the monomer near the chain plane, as seen at

the front view of Fig. 1b, and in the transverse waves

that are observed at the side view Fig. 1b. The tran-

sition into the quasi-hexagonal phase was observed at

the temperature above τ = 4.5. The snapshot (front

and side view) of the sample configuration at tempera-

ture τ = 5 and time t = 1 ns after initial time moment

is shown in Fig. 1c. The monomers in quasi-hexagonal

phase are randomly oriented although the chains in the

crystal are parallel to each other on the average. The

transverse waves are also observed in quasi-hexagonal

phase at the side view of Fig. 1c.

The ratio of the elementary crystal cell dimensions

transversal to the chain direction, b/a, is equal to
√
3 ≈

≈ 1.732 in the quasi-hexagonal phase. Calculated b/a

averaged through MD trajectory in NPT ensemble as a

function of temperature is presented in Fig. 2. The tran-

sition from monoclinic to quasi-hexagonal phase occurs

in the temperature range from τ = 4 to 4.5 Lennard-

Jones units as seen in Fig. 2. The transition manifests it-

self in the abrupt change of the system sizes in transver-

sal directions, which indicates the change of the chain

packing in the crystal. The ratio b/a = 1.732 stated

above the transition temperature implies the quasi-

hexagonal packing of the chains. Qualitatively similar

dependence of b/a on temperature for PE crystal was

obtained in united atom molecular dynamic simulation

in [11] (see Fig. 1 therein). Minor quantitative differ-

Fig. 2. Temperature dependencies of the elementary cell

dimensions ratio b/a and the probability density range of

setting angle

ences between Fig. 2 of this paper and Fig. 1 in [11] are

caused by the difference in force fields used in this work

and in [11].

To study the orientation order in the phases the dis-

tribution of the setting angle was calculated following

[11]. The distribution of the setting angle is a sum of

δ-functions in totally orientation ordered phase and is

a constant in disordered phase. The local setting angle

α is defined for each atom as follows. For each bond

angle formed by three neighboring atoms in one chain,

a bisector vector is constructed, which is multiplied by

(−1)n (n is the number of an atom in the chain). The

angle α is the angle between the x-axis and the projec-

tion of this vector onto xy-plane. The distributions of

setting angle for three temperatures are shown in Fig. 3.

Qualitatively, Fig. 3 looks similar to Fig. 2 in [11]. The

Fig. 3. Local setting angle distribution function for three

temperatures

quantitative differences should be attributed to the dif-

ference of the employed force fields.

In monoclinic phase (τ = 3 and 4), the setting an-

gle is distributed near α = 0◦ and 180◦ and the width

of distribution decreases with decrease of temperature.
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In quasi-hexagonal phase (τ = 5), the distribution of

setting angle is uniform that indicates the loss of ori-

entation order. For quantitative characterization of uni-

formity of the setting angle distribution, we utilized the

range of distribution. The range is equal to the max-

imal value of the setting angle minus the minimum

value of the setting angle. For totally inform distribu-

tion the range is equal to zero. The range of the set-

ting angle distribution as a function of temperature is

plotted in Fig. 2. The range tends to zero simultane-

ously with tending of b/a to 1.732, i.e. when the crystal

undergoes the phase transition to the quasi-hexagonal

phase. That indicates the vanishing of the orientation

order of monomers at the phase transition to the quasi-

hexagonal phase.

The relatively large deviation of the chains from

their initial positions (Fig. 1a) in axial direction is ob-

served in quasi-hexagonal phase (Fig. 1c) while the

chains keep their initial positions in monoclinic phase

(Fig. 1b). That indicates the increased chains mobil-

ity in axial direction in the quasi-hexagonal phase. For

quantitative characterization of the chains mobility, we

calculated the diffusion coefficient of the chain in axial

direction as a function of temperature. Diffusion coef-

ficient was calculated from MD trajectories as follows.

To track the large-scale displacement of the center of

mass of the chain we track the displacement of one se-

lected atom of this chain. The axial coordinates, zj(ti),

of selected atom of each chain were recorded at each

MD time step, ti. The mean square displacement of the

chains as a function of time was calculated as

〈∆z2(ti)〉 =
Nc∑

j=1

[zj(ti)− zj(0)]
2, (1)

where Nc is the number of chains in the system.

The dependencies 〈∆z2(t)〉 for three temperatures

are presented in Fig. 4 for the crystal with 100 carbon

atoms in each chain.

The mean square displacements in Fig. 4 were ap-

proximated by linear dependencies on time, 〈∆z2(t)〉 =
= 2Dt. Diffusion coefficient of the chains, D, is calcu-

lated from the slope of the linear trend of 〈∆z2(t)〉. Cal-

culated dependencies of D on the temperature for chain

with 100 carbon atoms is plotted in Fig. 5. The range of

setting angle distribution as a function of temperature

is also shown in the same plot. The diffusion coefficient,

D, abruptly increases in narrow region in the vicinity

of the phase transition temperature from monoclinic to

quasi-hexagonal phase as seen from Fig. 5. The chain

mobility at the temperature τ = 6 (quasi-hexagonal

phase) is almost four orders of magnitude higher than

that at the temperature τ = 4. Diffusion coefficient, D,

Fig. 4. Calculated from MD trajectories mean square dis-

placements of the chains, 〈∆z2(t)〉, as functions of time

for several temperatures. The number of carbon atoms in

the chain is 36

Fig. 5. Diffusion coefficient of the chains as a function of

temperature

is plotted with the setting angle distribution range in

Fig. 5 to emphasize the correlation between the orienta-

tion order and the chain mobility in the crystal. Thus,

the MD simulation predicts that the chain mobility in

PE crystal increases sharply with the vanishing of the

orientation order in the crystal at the transition to the

quasi-hexagonal phase.

The chain mobility in the quasi-hexagonal phase at

τ = 6 was calculated for four chain lengths and plotted

as a function of the chain length in Fig. 6. The chain

mobility in quasi-hexagonal phase is approximately in-

versely proportional to the chain length as seen in Fig. 6.

That indicates that the chains move in perfect quasi-

hexagonal crystal as a whole without activation barri-

ers. The PE chains diffusion in the crystallites in or-

thorhombic/monoclinic phase via the local topological

defects was studied in Refs.[12, 13] by molecular dynam-
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Fig. 6. Dependence of diffusion coefficient of the chains

on chain length at temperature τ = 5 (hexagonal phase).

Solid line is a fit by dependence D = const/N

ics simulations. The diffusion of the defects along the

chain results in chain longitudinal motion in the crys-

tallite, that is similar to reptation in polymer melt. The

mechanism of the chain motion in the quasi-hexagonal

phase differs from that in orthorhombic or monoclinic

phases and does not involve the topological defects. The

rod-like close packing of chains in the quasi-hexagonal

phase indicates that the nearest chains are not sensi-

tive to the details of the inter-chain interaction. That

implies the “sliding” mechanism of the chains motion

in quasi-hexagonal phase, when the chains slide relative

to each other without activation barriers. The random

collisions of the atoms of the chain with the atoms of

the nearest chains result in viscous friction. The friction

force is proportional to the chain length.

In conclusion, our MD study shows that the mo-

bility of PE chains in the crystal increases sharply (by

four orders of magnitude) at the transition of the PE

crystal to the quasi-hexagonal phase, where the orien-

tation order vanishes. The obtained results are in agree-

ment with the experimental observation [6]. The sliding

of polymer chains through the crystallites plays a key

role in the so-called αc structural transition in semicrys-

talline polymers with high degree of crystallinity, which

is observed in dielectric relaxation measurements [14].

Besides, the understanding of the mechanism of chain

mobility in crystallites can help to develop the micro-

scopic theory of semicrystalline polymers in high-elastic

state [15].
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