Исследования комплексных акцепторов в CdTe:Cl методом разностной спектроскопии

А. А. Пручкина¹⁾, В. С. Кривобок⁺, С. Н. Николаев, Е. Е. Онищенко, А. Г. Белов^{*}, Н. А. Денисов^{*}, В. Н. Меринов^{*}

Физический институт им. Лебедева РАН, 119911 Москва, Россия

⁺Московский физико-технический институт, 141700 Долгопрудный, Россия

*Государственный научно-исследовательский институт редкоземельной промышленности, 119017 Москва, Россия

Поступила в редакцию 9 августа 2013 г.

Для исследования акцепторных состояний в монокристаллах CdTe:Cl применена методика, основанная на получении разностного сигнала селективной фотолюминесценции донорно-акцепторных пар. Обнаружено расщепление уровней $2P_{3/2}(\Gamma_8)$ и $2S_{3/2}(\Gamma_8)$ тетраэдрического акцептора Ag_{Cd} по мере сближения донора и акцептора. Определена энергия семи возбужденных состояний комплексного акцептора с энергией активации ~121 мэВ.

DOI: 10.7868/S0370274X13200034

При легировании ряда полупроводников происходит спонтанное образование комплексных дефектов, которые компенсируют введенную донорную или акцепторную примесь [1]. В последнее время систематизированный подход к решению данной проблемы, часто упоминаемой в литературе как явление "самокомпенсации", развивается на основе расчетов "из первых принципов" (см., например, [2,3]). Сопоставление результатов этих расчетов с экспериментальными данными об электронном спектре и симметрии дефектов дает возможность точно установить тип компенсирующих дефектов и, соответственно, механизм "самокомпенсации" в заданном полупроводниковом соединении. Для получения детальной информации о комплексных дефектах необходимо развитие экспериментальных методов, позволяющих, помимо энергии основного состояния, определять спектр возбужденных состояний, их симметрию, частоты локальных колебаний и т.д.

Характерной особенностью компенсированного полупроводника является наличие в нем донорноакцепторных пар (ДАП). Различные состояния близко расположенных доноров и акцепторов формируют полосы поглощения. Анализ спектров фотолюминесценции (ФЛ) при селективном возбуждении таких полос позволяет получить информацию о наборе возбужденных состояний дефектов, формирующих ДАП [4]. При экспериментальной реализации описанного подхода селективную фотолюминесценцию (СФЛ) необходимо отделить от структурированного люминесцентного фона, возникающего вследствие различных процессов передачи возбуждения между дефектами. В случае сильно легированных полупроводников данная процедура дополнительно усложняется уширением электронных состояний, которое вызвано влиянием дефектов друг на друга. Для преодоления описанных сложностей представляются эффективными методы разностной спектроскопии.

В данной работе измерения разностного сигнала СФЛ были использованы для определения энергий возбужденных состояний комплексного акцептора с энергией активации $E_A \sim 121$ мэВ, возникающего в легированных Cl монокристаллах CdTe. В литературе этот акцептор приписывается комплексу с участием вакансии Cd и донора Cl (А-центр) [5]. Исследовались монокристаллы CdTe:Cl с удельным сопротивлением $\sim 10^9$ Ом·см, выращенные методом движущегося нагревателя (THM). Остаточный примесный фон данных образцов находился на уровне $\sim 10^{15}$ см⁻³. В качестве перестраиваемого источника для возбуждения ФЛ применялся непрерывный Ti–Sp лазер (подробно экспериментальная установка описана в [6]).

На рис. 1 приведен спектр $\Phi \Pi$ (5 K), записанный при возбуждении монокристалла выше края собственного поглощения. Краевая $\Phi \Pi$ представлена тремя линиями экситонов, связанных на нейтральных акцепторах ($A^0 X$), и структурированной полосой $D^0 X$, соответствующей излучению экситонов,

¹⁾e-mail: pruchkina-aa@mail.ru

Рис. 1. Спектр ФЛ (5 К), записанный при возбуждении монокристалла выше края собственного поглощения. На вставке приведен результат вычитания из спектра ФЛ в области 1.46–1.51 эВ спектра ФЛ, сдвинутого на энергию LO-фонона (~21 мэВ) и помноженного на 1.5, демонстрирующий наличие ДАП с участием Ag_{Cd} и Ацентра

связанных на нейтральных донорах Cl_{Te}. Согласно результатам работ [4,7] интенсивная линия A^0X в районе 1.5885 эВ и полоса излучения ДАП с красной границей бесфононного перехода ~1.484 мэВ указывают на присутствие в образцах акцептора Ag_{Cd} с $E_{\rm A} = 107.5$ мэВ. Наличие $Ag_{\rm Cd}$ позволило оценить возможности предложенной методики и сравнить электронные спектры комплексного и тетраэдрического акцепторов, имеющих близкие энергии активации. На длинноволновом плече ДАП с участием Ag_{Cd} регистрируется дополнительная особенность, вызванная присутствием более глубоких акцепторов. Для того чтобы выделить бесфононные линии ДАП, из спектра ФЛ в области 1.46-1.51 эВ вычитался спектр ФЛ, сдвинутый на энергию LOфонона ($\sim 21 \text{ мэВ}$) и помноженный на 1.5. Выбранный множитель приблизительно соответствует отношению интенсивности первого LO-повторения к интенсивности бесфононной полосы ДАП с участием Ag_{Cd}. Результат вычитания, приведенный на вставке к рис. 1, позволяет утверждать, что в кристалле, помимо Ag_{Cd}, присутствует другой акцепторный центр, формирующий ДАП с красной границей бесфононного перехода 1.470 ± 0.002 эВ. Так как ширина запрещенной зоны в CdTe E_G и энергия основного состояния для донора Cl_{Te} E_D при 2 K составляют, соответственно, 1.606 и 0.01449 эВ [8], основное состояние глубокого акцептора расположено на $0.1205 \pm$ ± 0.002 эВ выше потолка валентной зоны. Полученная величина приписывается акцепторному комплексу с участием вакансии Cd и донора Cl [5].

Письма в ЖЭТФ том 98 вып. 7-8 2013

Для СФЛ ДАП справедливо следующее выражение, связывающее энергии испущенного ($\hbar\omega$) и возбуждающего ($\hbar\omega_{ex}$) квантов [4]:

$$E_A^* + E_D^* = E_A + E_D - (\hbar\omega_{ex} - \hbar\omega) - o\left(\frac{1}{R_{DA}}\right), \quad (1)$$

где E_A , E_D – энергии основного состояния донора и акцептора, образующих ДАП, отсчитанные, соответственно, от потолка валентной зоны и дна зоны проводимости; E_D^\ast
и E_A^\ast – энергии состояний, участвующих в поглощении кванта $\hbar \omega_{ex}$. Положительная поправка о $(1/R_{DA})$ возникает вследствие взаимодействия электрона и дырки, находящихся в возбужденных состояниях донора или акцептора. В случае достаточно разнесенных ДАП поправка $o(1/R_{DA})$ мала. Поэтому в первом приближении можно считать, что СФЛ ДАП претерпевает энергетический сдвиг, пропорциональный малому изменению частоты возбуждающего излучения $\delta\omega$. Предположим, что спектр ФЛ $I(\omega_{ex}, \omega) = I_R(\omega_{ex} - \omega) + I_{NR}(\omega)$ содержит "резонансную" часть $I_R(\omega_{ex} - \omega)$, которая зависит только от стоксова сдвига $\omega_{ex} - \omega$, и "нерезонансную" часть $I_{NR}(\omega)$, слабо зависящую от ω_{ex} . В этом случае

$$I_R(\omega_{ex} - \omega) \approx C - \int_{\omega_0}^{\omega} I(\omega_{ex} + \delta\omega, \omega') - I(\omega_{ex}, \omega') \, d\omega',$$
(2)

где ω_0 – низкочастотная граница диапазона, в котором измеряется спектр ФЛ. Таким образом, интегрирование разностного спектра ФЛ позволяет выделить сигнал СФЛ ДАП. Отметим, что в формуле (2) для упрощения не учитывается возможная частотная зависимость коэффициента поглощения и скорости безызлучательной рекомбинации носителей. Последовательное рассмотрение в сочетании с анализом экспериментальных результатов показывает, что роль данных факторов можно значительно снизить, если в выражении (2) использовать спектры ФЛ, нормированные на интегральную интенсивность.

Рис. 2 иллюстрирует применение описанной выше разностной методики для выделения сигнала СФЛ ДАП. На данном рисунке нижняя кривая (I) представляет собой фрагмент спектра ФЛ, записанный при нерезонансном возбуждении. Использование квазирезонансного возбуждения приводит к появлению сателлитов СФЛ (кривая II) со спектральным положением, задаваемым выражением (1). Количество наблюдаемых сателлитов определяется набором возбужденных состояний ДАП с участием Ag_{Cd} и A-центра, которые удается разрешить

Рис. 2. Восстановление спектра ФЛ с помощью разностной методики. Кривая I – спектр ФЛ при нерезонансном возбуждении, II – при квазирезонансном возбуждении ДАП $\hbar\omega_{ex} = 1.58441$ эВ, III – разностный сигнал $I(\omega_{ex} + \delta\omega, \omega) - I(\omega_{ex}, \omega)$, соответствующий $\delta\omega =$ = 0.1 мэВ, IV – восстановленный спектр селективной ФЛ $I_R(\omega_{ex}, \omega)$. Температура 2 К. Обозначения сателлитов расшифрованы в таблицах 1 и 2

при данной энергии возбуждающих квантов. Помимо СФЛ, кривая II содержит вклад структурированного фона, по форме схожего со спектром ФЛ при нерезонансном возбуждении. Кривая III иллюстрирует разностный сигнал, полученный с помощью вычитания спектра ФЛ, записанного при $\hbar\omega_{ex} = 1.58441$ эВ, из спектра, соответствующего $\hbar\omega_{ex} = 1.58451$ эВ. В данном случае вклад медленно меняющегося фона пренебрежимо мал, а сателлитам СФЛ соответствуют выраженные "резонансные" особенности. Первообразная по $\hbar\omega$ от полученного разностного сигнала (кривая IV), в которой переменная $\hbar\omega$ заменяется стоксовым сдвигом $\hbar\omega_{ex} - \hbar\omega$, отражает спектр СФЛ.

При значительном изменении энергии возбуждающих квантов спектр СФЛ $I_R(\omega_{ex} - \omega)$ модифицируется (см. рис. 3). Наблюдаемая модификация вызвана в основном зависимостью от R_{DA} сил осциллятора оптических переходов с участием различных состояний ДАП и смещением сателлитов за счет отличной от нуля поправки о $(1/R_{DA})$.

На рис. 4 представлена карта спектрального положения сателлитов СФЛ, построенная с помощью

Рис. 3. Примеры восстановленных спектров селективной ФЛ ДАП с участием акцепторов Ag_{Cd} и А-центра при различных энергиях возбуждающих квантов (приведены на рисунке слева). На вставке сверху показано расщепление сателлитов а и b, вызванное сближением Ag_{Cd} и Cl_{Te} . Нижняя вставка демонстрирует близко расположенные сателлиты 1 и 2. Обозначения сателлитов расшифрованы в таблицах 1 и 2

обработки большого массива кривых, аналогичных приведенным на рис. 3. Она позволяет проследить изменение спектрального положения сателлитов в зависимости от энергии возбуждающих квантов и, таким образом, определить вклад $o(1/R_{DA})$. Для обозначения группы сателлитов, относящихся к заданным состояниям E_A^* и E_D^* , на рис. 4 проведены сплошные серые кривые.

Бесфононные сателлиты, относящиеся к ДАП с участием Ag_{Cd} и Cl_{Te} , расположены внутри области, определяемой условием

$$\hbar\omega_{ex} - \hbar\omega < \hbar\omega_{ex} + E_A + E_D - \frac{e^2}{\varepsilon R_{DA}^{\infty}} - E_G, \quad (3)$$

где $E_A = 107.5$ мэВ, $E_D = 14.49$ мэВ, $\varepsilon = 10.2$ – статическая диэлектрическая проницаемость, $R_{DA}^{\infty} = 40$ нм – расстояние между Ag_{Cd} и Cl_{Te} , при котором перекрытие волновых функций, относящихся к основным состояниям, можно считать пренебрежи-

Письма в ЖЭТФ том 98 вып. 7-8 2013

Рис. 4. Карта сателлитов СФЛ с участием акцепторов Ag_{Cd} а–g и А-центра 1–7 при 2К. Нижние индексы "LA/TA" и "LO" обозначают фононные повторения, соответственно, акустическими и продольными оптическими фононами. Штриховая и штрихпунктирная линии обозначают верхнюю границу областей, задаваемых (3), соответственно, при $E_A = 120.5$ и 107.5 мэВ

мо малым [4]. На рис. 4 верхняя граница области, задаваемой (3), отмечена штрихпунктирной линией, а группы сателлитов, отвечающих фиксированным E_A^* и E_D^* и попадающих в данную область, обозначены латинскими буквами а-д. Выше штрихпунктирной полосы наблюдаются только фононные повторения указанных сателлитов, для обозначения которых используется нижний индекс с указанием типа фонона. При вычислении энергии возбужденного состояния, отвечающего заданной группе, использовались бесфононные сателлиты, соответствующие наименьшим $\hbar\omega_{ex}$, для которых $o(1/R_{DA})$ минимально. Полученные таким образом данные систематизированы в табл. 1. В пределах погрешности ~ 0.2 мэВ все обнаруженные комбинации электронных состояний описываются ДАП с участием Ag_{Cd} и Cl_{Te} [4,8].

Для заданной группы сателлитов увеличение $\hbar\omega_{ex}$ соответствует уменьшению расстояния между донором и акцептором. При $R_{DA} > 10$ нм поправка о $(1/R_{DA}) \sim 1/R_{DA}^4$ описывается поляризационным взаимодействием между электроном и дыркой и приводит лишь к незначительному смещению са-

теллитов СФЛ [4]. На рис. 4 для групп сателлитов а и b удается наблюдать качественно иную картину при $\hbar\omega_{ex} > 1.59$ эВ, что соответствует $R_{DA} < 8$ нм. С ростом $\hbar\omega_{ex}$ отчетливо регистрируется расщепление сателлитов СФЛ, которое не описывается поляризационной поправкой. Оно вызвано снятием четырехкратного вырождения, характерного для электронных состояний тетраэдрических акцепторов в CdTe. Как целое ДАП имеет симметрию не выше C_{3v} . Поэтому если донор и акцептор расположены достаточно близко, эффективный потенциал с пониженной симметрией приводит к расщеплению акцепторных состояний.

Бесфононные сателлиты, расположенные рис. 4 выше штрихпунктирной полосы, не могут быть вызваны ДАП с участием Адс. Штриховая линия на рис. 4 определяет верхнюю границу области, аналогичной (3), но с $E_A = 0.1205 \, \mathrm{sB}$, что соответствует оцененной выше энергии активации А-центра. Таким образом, группы бесфононных сателлитов, расположенные между штриховой и штрихпунктирной линиями, представляют собой СФЛ ДАП с участием А-центра. На рис. 4 данные группы помечены жирными серыми линиями и обозначены цифрами 1-7. Для каждой группы стоксов сдвиг сателлитов, наблюдаемых при минимальных $\hbar\omega_{ex}$, и энергии соответствующих им возбужденных состояний систематизированы в табл. 2. Как видно из таб.2, А-центр формирует семь электронных состояний в диапазоне энергий 26-9 мэВ, два из которых сдвинуты друг относительно друга примерно на 0.9 мэВ (см. нижнюю вставку к рис. 3). Подобная структура возбужденных состояний указывает на снятие четырехкратного вырождения и гибридизацию водородоподобных оболочек [6]. Это означает, что потенциал, локализующий дырку вблизи Ацентра, характеризуется пониженной симметрией (не выше C_{3v}). Сделанный вывод согласуется с имеющимися представлениями об А-центрах как об аксиальных комплексах [5].

В отличие от Ag_{Cd} , для групп сателлитов 1–3, отвечающих наиболее глубоким возбужденным состояниям А-центра, расщепления при малых R_{DA} не наблюдается (рис. 4). Так как четырехкратное вырождение возможно только при высокой (T_D) симметрии акцептора, отсутствие расщепления является независимым доказательством низкой симметрии (не выше C_{3v}) А-центра. Представленный анализ сателлитов СФЛ ДАП с участием Ag_{Cd} и А-центра позволяет предложить простой способ диагностики симметрии акцепторных центров в полупроводниках со структурой цинковой обманки. Расщепление сателлитов, от-

Таблица 1

Интерпретация сателлитов СФЛ ДАП Ag_{Cd} и Cl_{Te} и сравнение энергии возбужденных состояний Ag_{Cd} , вычисленных на основе (1), с литературными

данными*)

	Сдвиг,	$E_A^* + E_D^*$	$E_A^*,$	E_A^* , мэВ
	мэВ		мэВ	[4, 7]
a	84.03	$2P_{3/2}(\Gamma_8) - 1S$	23.6	23.8 - 24.2
b	87.9	$2S_{3/2}(\Gamma_8) - 1S$	19.6	19.6
с	92.45	$2P_{5/2}(\Gamma_8) - 1S$	15.05	15.0 - 15.1
d	94.45	$2P_{3/2}(\Gamma_8) - 2S$	23.91	23.8 - 24.49
е	96.52	$2P_{5/2}(\Gamma_7) - 1S$	11.06	11.3 - 11.4
f	97.7	$3S_{3/2}(\Gamma_8) - 1S$	9.8	9.6
g	98.94	$2S_{3/2}(\Gamma_8) - 2S$	19.42	19.6

*) Энерги
и $1S~(14.49\,{\rm мэB})$ и $2S~(3.63\,{\rm мэB})$ состояни
й $\rm Cl_{Te}$ взяты из работы [8].

носящихся к нижайшим возбужденным состояниям акцептора, при малых (порядка размера заданного возбужденного состояния) R_{DA} означает, что акцептор имеет симметрию T_D . В противном случае его симметрия не выше C_{3v} .

Из данных таблиц 1 и 2 следует, что А-центр и Ag_{Cd} имеют близкие энергии возбужденных состояний *P*-типа. Это можно объяснить быстрым убыванием нететраэдрической части потенциала А-центра. Для *P*-состояний вероятность обнаружить дырку вблизи центральной ячейки стремится к нулю. Поэтому нететраэдрическая часть потенциала оказывается малой поправкой и приводит лишь к небольшим сдвигам и расщеплениям. Сопоставляя спектры Ag_{Cd} и А-центра, можно также предположить, что группа сателлитов 3 относится к состоянию, возникающему в результате расщепления оболочки $2S_{3/2}(\Gamma_8)$. Пару данному уровню составляет, по-видимому, состояние 6 или 7.

Итак, нами предложена методика определения электронного спектра дефектов в компенсированных полупроводниках, основанная на измерении разностных сигналов ФЛ при возбуждении образца излучением с двумя близкими длинами волн. Она применена для исследования акцепторных состояний в запрещенной зоне монокристаллов CdTe:Cl. С помощью разностных измерений при резонансном возбуждении ДАП получены энергии пяти возбужденных состояний фонового акцептора Ag_{Cd} , которые хорошо согласуются с литературными данными. Для такого тетраэдрического центра обнаружен эффект, связанный с расщеплением четырехкратно вырожденных уровней $2P_{3/2}$ и $2S_{3/2}$ по мере сближения доно-

Возбужденные состояния А-центра*)

	Сдвиг,	$E_A^*,$	Интерпретация
	мэВ	мэВ	
1	95.19	25.31	Расщепленный уровень
2	96.08	24.42	$2P_{3/2}(\Gamma_8)$
3	99.33	21.17	Расщепленный уровень
			$2S_{3/2}(\Gamma_8)$
4	104.78	15.72	Расщепленный уровень
5	106.35	14.15	$2P_{5/2}(\Gamma_8)$
6	109.67	10.83	Расщепленный уровень
7	111.28	9.22	$2S_{3/2}(\Gamma_8)$ и возмущенный
			уровень $2P_{5/2}(\Gamma_7)$

*)Цифры в левом столбце соответствуют обозначениям сателлитов на рис. 2–4.

ра и акцептора, образующих ДАП. Для комплексного акцептора, возникающего при легировании CdTe хлором (А-центр), определены энергии основного состояния и семи возбужденных состояний. Структура возбужденных состояний А-центра объясняется в рамках представлений о гибридизации примесных волновых функций S- и P-типа в системе с пониженной симметрией. Развит простой бесконтактный метод, позволяющий без внешнего поля регистрировать понижение симметрии для акцепторных центров в прямозонных полупроводниках со структурой цинковой обманки.

Авторы благодарны М. Л. Скорикову и В. В. Белых за помощь при постановке экспериментов. Работа выполнена при финансовой поддержке РФФИ (гранты # 12-02-031521, 12-02-01140, 12-02-33091).

- 1. A. Zunger, Appl. Phys. Lett. 83(1), 57 (2003).
- K. Biswas and M.-H. Du, New Journal of Physics 14, 063020 (2012).
- A. Carvalho, A. K. Tagantsev, S. Öberg et al., Phys. Rev. B 81, 075215 (2010).
- E. Molva, J. L. Pautrat, K. Saminadayar et al., Phys. Rev. B 30(6), 3344 (1984).
- D. M. Hofmann, P. Omling, H. G. Grimmeiss et al., Phys. Rev. B 45(11), 6247 (1992).
- В. С. Багаев, В. С. Кривобок, Е. Е. Онищенко и др., ЖЭТФ 140(5), 929 (2011).
- G. Chen, I. Miotkowski, and A.K. Ramdas, Phys. Rev. B 85, 165210 (2012).
- J. M. Francou, K. Saminadayar, and J. L. Pautrat, Phys. Rev. B 41, 12035 (1990).

Таблица 2