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The broken symmetry state with off-diagonal long-range order (ODLRO), which is characterized by the

vacuum expectation value of the operator of creation of the conserved quantum number Q, has the time-

dependent order parameter. However, the breaking of the time translation symmetry is observable only if the

charge Q is not strictly conserved and may decay. This dihotomy is resolved in systems with quasi-ODLRO.

These systems have two well separated relaxation times: the relaxation time τQ of the charge Q and the energy

relaxation time τE. If τQ ≫ τE, the perturbed system relaxes first to the state with the ODLRO, which persists

for a long time and finally relaxes to the full equilibrium static state. In the limit τQ → ∞, but not in the strict

limit case when the charge Q is conserved, the intermediate ODLRO state can be considered as the ground

state of the system at fixed Q with the observable spontaneously broken time translation symmetry. Examples

of systems with quasi-ODLRO are provided by superfluid phase of liquid 4He, Bose–Einstein condensation of

magnons (phase coherent spin precession) and precessing vortices.
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1. Introduction. Let us consider systems charac-

terized by quasi-conserved macroscopic quantum num-

ber Q. By quasi-conservation we mean that the relax-

ation time τQ of the charge Q is much larger than the re-

laxation time τE of energy. The quantum number Q can

be the particle number N (number of baryons, atoms,

etc.); the number of quasiparticles (magnons, phonons,

photons, kelvons. etc.); spin projection Sz; angular mo-

mentum projection Lz; etc. In such systems the ini-

tial excited state first relatively rapidly relaxes to the

state with minimal energy at fixed Q, and then rela-

tively slowly relaxes to the state with equilibrium value

Q = Q0, where dE/dQ = 0. When Q 6= Q0, the system

may experience oscillations with frequency ω = dE/dQ

(if Q is properly normalized). Such oscillations if exist

represent the broken symmetry state characterized by

the off-diagonal long-range order (ODLRO)

〈

â+
〉

∝ eiωt+iα, (1)

where â+ is the creation operator of the quantum num-

ber Q, with Q̂ = â+â.

In the limit τQ → ∞, the state (1) can be considered

as the state with spontaneously broken time translation

symmetry as discussed in Ref. [1]. However, in the strict

limit τQ = ∞, when the charge Q is conserved, the oscil-

lations become unobservable, since the reference frame
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with respect to which they can be measured is lost. In

other words, when the charge Q is strictly conserved

the ground state oscillations are either absent [2–4] or

are not observable. We call the systems with τQ ≫ τE ,

which experience the ODLRO in the intermediate time

τQ ≫ t ≫ τE , the systems with quasi-ODLRO.

Typical example of the system with quasi-ODLRO

is the superfluid 4He, where Q = N4 is the number of
4He atoms, and ω = µ4 is the chemical potential. The

life time of 4He atoms is finite due to proton decay,

that is why in a full equilibrium the chemical potential

is strictly zero, µfull equil = 0. The life-time of the 4He

atom is astronomically large, τQ > 1034 years, that is

why we are in the limit when N4 can be considered as

conserved quantity where the U(1) symmetry is obeyed

and the chemical potential is well defined. The ground

state of the system with fixed N4 is time dependent ac-

cording to Eq. (1) with ω = µ4. Observation of these

oscillations is only possible if the U(1) symmetry is ex-

plicitly violated and the proton decay is possible. Thus

the observation would serve as the experimental evi-

dence for the non-conservation of the baryonic charge

and the proton instability.

Below we consider some other examples of macro-

scopic systems with quasi-ODLRO, where τQ and τE
are highly separated, τQ ≫ τE . These are magnon BEC

in superfluid 3He–B and the precessing vortex system,

also in superfluid 3He–B. Though in the present experi-
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Fig. 1. The stroboscopic record of the free induction decay signal of coherent precession (from Ref. [5]). The same process

discussed in the language of magnon BEC see in Fig. 2. Left – During the first stage of about 0.002 s the induction signal

completely disappears due to dephasing. Then, during the energy relaxation time τE ∼ 0.02 s, the spin supercurrent redis-

tributes the magnetization and creates the phase coherent precession, which is equivalent to the magnon BEC state. Due

to small magnetic relaxation with τQ ∼ 1 s, the number of magnons slowly decreases but the precession remains coherent.

Precession with essentially larger τQ emerges for magnon BEC confined in magneto-textural trap, see e.g. [6]. Right – The

magnon BEC signal for t ≪ τQ. Coherent spin precession looks as the ODLRO state with spontaneously broken symmetries:

U(1) symmetry (or equivalently the SO(2) symmetry) and the time translation symmetry

mental situation the relaxation time τQ is not astronom-

ically large (varying in 3He–B from minutes to hours),

but in principle the astronomical time can be reached

at lower temperatures.

2. Coherent spin precession and magnon

BEC. In case when Q = Sz, the spin projection on

the direction of magnetic field, the corresponding state

with the off-diagonal long-range order represents the

spontaneously emerging coherent spin precession [5] (see

Fig. 1). In a full equilibrium, the density of the spin pro-

jection Sz has equilibrium value, which in magnetic field

H applied along the axis z is Sz
full equil = χH/γ, where

χ is spin susceptibility of 3He–B and γ is the gyromag-

netic ratio of the 3He atom. In the limit, when losses of

magnetization can be neglected, the spin projection Sz

on magnetic field can be considered as conserved quan-

tity, and the SO(2) spin rotation symmetry is obeyed.

For superfluid 3He–B one finds that if it has the non-

equilibrium value of spin, Sz 6= V χH/γ, it experiences

spontaneous breaking of SO(2) symmetry which is man-

ifested by the phase coherent precession. This precessing

state has the ODLRO based on the operator of spin

creation, 〈S+〉 = S sinβ eiωt+iα, where β is the tip-

ping angle (cosβ = Sz/S); and the global frequency

ω = dE/dSz is coordinate independent even if the pre-

cession is spatially inhomogeneous due to textures and

nonuniform magnetic field.

In the limit τQ → ∞ it is an example of the system

with spontaneously broken time translation symmetry

and off-diagonal long range order in the asymptotically

free of dissipation regime, as discussed in Ref. [1]. Note

that the relaxation of the quantum number Q does not

destroy the phase coherent precession: it simply changes

the volume of the region, where the precession takes

place. The oscillations are observed through the free in-

duction decay signal generated by precession of magneti-

sation, i.e. they are observable because the interaction

of spin with electromagnetic field explicitly violates the

SO(2) spin rotation symmetry.

The relaxation time τQ in the infinite systems is

mainly determined by spin-orbit interaction, which vio-

lates spin rotation symmetry and leads to the losses of

spin. One can consider the model system with uniaxial

anisotropy, in which the spin-orbit interaction does not

violate the spin rotation symmetry along the z-axis. In

this case the Sz is good quantum number, and if the

phase coherent precession is stable (the condition for

that is d2E/dQ2 > 0), the precessing state would corre-

spond to the ground state at fixed Q. However, since in

this model the charge Q is strictly conserved, the con-

nection with the orbital degrees of freedom is lost, and

the time dependence is unobservable.

Actually the similar model in terms of two species

has been considered in Ref. [1]. The quantum number
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Fig. 2. Formation and relaxation of coherent spin precession in Fig. 1 in the language of the Bose–Eistein condensation of

magnons (from Ref. [5]). Left – Incoherent precession after applied pulsed NMR. middle – After short time τE of energy

relaxation the ordered state is formed, which is represented by the BEC of magnons in the region where the chemical potential

µ of magnons exceeds the external potential U . Magnon BEC is manifested as precession with coherent phase and global

frequency. right – Relaxation of the quasi-conserved quantum number Q = Sz does not destroy magnon BEC, but leads to

the slow decrease of its volume

Q there corresponds to the difference in populations,

Q = N+−N
−
, while the precession frequency is the dif-

ference in chemical potentials, ω = |µ+−µ
−
|. Here again

if the charge Q is fully conserved, the oscillations are

not observable. For observability one must violate the

U(1) symmetry related to the conservation of charge Q,

for example by introducing the tunneling between the

species. But in this case the oscillating state becomes

non-equilibrium and will finally relax to the equilibrium

state with µ+ = µ
−

. The quasi-ODLRO state exists in

this model if τQ ≫ τE . The oscillations can be consid-

ered as the internal Josephson effect (though the inter-

nal Josephson effect discovered in 3He–A [7] refers to

the longitudinal oscillations of magnetization, i.e. oscil-

lations of Sz [8]).

The phase coherent precession has the parallel with

the superfluid state of liquid 4He, which is explic-

itly seen if one uses the language of magnons, see

Fig. 2. In this language, the quasi-conserved quantity

Q is the magnon number NM = (S − Sz)/~, while

the approximate SO(2) spin symmetry is substituted

by the approximate U(1) symmetry in magnon sys-

tem. In the full equilibrium, the chemical potential of

magnons is zero, µ = 0, since their number is not con-

served. The coherent precession in 3He–B corresponds

to the Bose–Einstein condensation of magnons (magnon

BEC). The condition τQ ≫ τE in 3He–B means that

the life time of magnon BEC is large compared to the

time of thermalization, which leads to the formation

of magnon BEC. In the limit of vanishing dissipation

the magnon chemical potential µ becomes well deter-

mined, being equal to the global frequency of preces-

sion, µM = ω, which in turn depends on the number

NM of the pumped magnons. Relaxation slowly reduces

the volume occupied by magnon BEC, but does not de-

stroy it.

The related process in cosmology is discussed in

Ref. [9].
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Fig. 3. Vortex precession and its relaxation (from Ref. [11]). Left – Sketch of the partially trapped vortex. Circulation about

the trapped part of the vortex gives rise to the orbital angular momentum, Lz. The Lz is the quasi-conserved quantity, which

is zero in the full equilibrium, when the vortex disappears. The nonzero value of Lz in the quasi-equilibrium state, gives rise

to the macroscopic precession with frequency ω = dE/dLz. Right – The further relaxation of Lz does not destroy precession,

but decreases the length of the trapped part of the vortex (the vertical axis corresponds to the relative length of the trapped

vortex). The process of relaxation is similar to that in Fig. 1 left

3. Vortex precession. Example of ODLRO is also

provided by the precession of a vortex line in 3He–B

in Fig. 3, where hours long oscillations have been ex-

perimentally observed [10, 11]. The vortex is partially

trapped by wire. Outside the trapped part of the vor-

tex there is circulating flow of the liquid around the

wire, which has the orbital angular momentum Lz =

= ~(ν/2)n3V , where n3 is the density of 3He atoms; ν is

the number of circulation quanta in the trapped vortex;

V = πR2l is the volume of the part of the container with

trapped circulation; l is the length of the trapped piece

of the vortex. Lz is not strictly conserved due to inter-

action with the static boundaries, but the interaction is

highly reduced at low temperature, where in the limit of

small dissipation, the projection Lz can be considered as

quasi-conserved quantum number. The precessing state

of a free part of the vortex can be represented in terms

of the ODLRO based on the operator of creation of the

orbital angular momentum 〈L+〉 ∝ eiωt+iα, where the

precession frequency ω = dE/dLz . The oscillations are

observed due to explicit violation of the axial SO(2)

cylindrical symmetry: the wire, which traps the vortex,

is not exactly in the center of the cylindrical vessel. That

is why the length of the vortex is oscillating.

This coherent precession of a vortex can be described

using the language of macroscopic ac Josephson effect

[12] and also the language of the BEC: in this case the

proper excitations are those which propagate along the

vortex line – Kelvin waves or kelvons.

The related process takes place in experiments with

the propagating turbulent vortex front [13], where the

relaxation time of Lz is much longer than the energy re-

laxation time. As a result the front is also characterized

by the precession of vortices. In the limit of low temper-

ature the effect of the decoupling from the environment

is observed, when the vortex system chooses its own an-

gular velocity of rotation, which is independent of the

angular velocity of container.

4. Discussion. In conclusion, the broken time trans-

lation symmetry may emerge in the limit of large life

time τQ, but is absent at τQ = ∞ when the charge Q is

strictly conserved, since the breaking of the time trans-

lation symmetry could be observable only through the

decay of the charge Q. The compromise is reached in the

systems with quasi-ODLRO. We considered examples of

such systems – superfluid 4He, magnon BEC and pre-

cessing vortices. These systems have the quasi-conserved

quantum number or charge Q, whose relaxation time τQ
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is finite, but is much larger than the energy relaxation

time τE . In the time scale τQ ≫ t ≫ τE , these sys-

tems experience the symmetry breaking characterized

by the off-diagonal long-range order, with the nonzero

vacuum expectation value of the operator of creation of

the quantum number Q. Within this time interval the

ODLRO state represents the broken time translation

symmetry in the ground state at fixed Q, or at fixed

chemical potential µ.

It is the ODLRO, which distinguishes the considered

states from the general periodic dynamical states, which

can be also asymptotically free of dissipation. The class

of the quasi-ODLRO states do not include for exam-

ple the amplitude (Higgs) modes, which emerge after

quench in superfluids and superconductors (see [14, 15]

and references therein) and oscillations emerging in cos-

mology (in inflationary models [16]; in the models of the

vacuum energy decay [17]; in cyclic Universes [18]; etc.).
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