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On the persistence of breathers at deep water
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The long-time behavior of a perturbation to a uniform wavetrain of the compact Zakharov equation is

studied near the modulational instability threshold. A multiple-scale analysis reveals that the perturbation

evolves in accord with a focusing nonlinear Schrodinger equation for values of wave steepness µ < µ1 ≈ 0.274.

The long-time dynamics is characterized by interacting breathers, homoclinic orbits to an unstable wavetrain.

The associated Benjamin–Feir index is a decreasing function of µ, and it vanishes at µ1. Above this thresh-

old, the perturbation dynamics is of defocusing type and breathers are suppressed. Thus, homoclinic orbits

persist only for small values of wave steepness µ ≪ µ1, in agreement with recent experimental and numerical

observations of breathers.
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1. Introduction. The dynamics of unidirectional

and inviscid narrowband waves in deep water obeys

the one-dimensional (1D) nonlinear Schrodinger (NLS)

equation. In accord with this model, a finite-amplitude

uniform wavetrain is unstable to infinitesimal sub-

harmonic disturbances, the so-called modulational or

Benjamin–Feir instability [1, 2]. The long-time behavior

of an unstable wavetrain is characterized by successive

modulation and demodulation cycles [3, 4], or Fermi–

Pasta–Ulam (FPU) recurrence [5]. This is the signature

of breathers, homoclinic orbits to an unstable uniform

wavetrain [6].

Recent studies propose the NLS breather as a model

to explain rogue waves, unusually large waves that ap-

pear from nowhere at the ocean [6–11]. Breathers have

been observed in laboratory experiments at sufficiently

small values of the carrier wave steepness ∼ 0.01−0.09

[12, 13], and in agremeent with numerical simulations of

the fully nonlinear Euler equations [14]. However, recent

experimental results on the Peregrine breather indicate

that breathers are suppressed somewhat as wave steep-

ness increases [15].

In this work, we propose to further investigate the

modulational properties of unidirectional deep-water

wavetrains and the persistence of breathers. We aim

to study the weakly nonlinear space-time evolution of

a linearly unstable wavetrain of the compact Zakharov

equation recently derived by [16], hereafter referred to

as cDZ.

1)e-mail: fedele@gatech.edu

The paper is organized as follows. In section 2, we

introduce the cDZ equation and derive the associated

set of equations in terms of local amplitude and phase

of the wave field. In section 3, the linear stability analy-

sis of a uniform wavetrain is presented. This is followed

in section 4 by a multiple-scale analysis of the pertur-

bation dynamics near the modulation instability thresh-

old. Concluding remarks on the theoretical results are

finally presented.

2. Governing equations. We consider the local

form of the cDZ equation and ignore wave-induced cur-

rent effects. Define k0 = ω2
0/g and ω0 as the wavenumber

and frequency of the carrier wave ei(k0x−ω0t), and cg is

the associated group velocity in deep water. Drawing

upon [17], the leading order wave surface η is given by

k0η(X,T ) = B(X,T )ei(k0x−ω0t) + c.c., (1)

where the non-dimensional envelope B evolves on the

scales X = k0(x− cgt) and T = ω0t in accord with

i∂TB =
δH
δB∗

. (2)

Here, δ denotes variational differentiation, the Hamilto-

nian is given by

H =

∫

R

[

B∗ΩB +
i

4
|SB|2[B(SB)∗ −B∗SB]

]

dX, (3)

and

S = ∂X + i, Ω =
1

8
∂XX ,

where third- and higher-order dispersion terms are not

accounted for. The carrier wave steepness µ = k0a0 =

= 2 |B| , with a0 = 2 |B| /k0 as the amplitude of η. Note
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that (2) is valid if k0 ≫ 1 or if the spectrum of B has

negligible energy for wavenumbers k < −k0, viz. the

spectral bandwidth ∆k/k0 < 1. Otherwise, a projec-

tion operator P+ must be applied to the nonlinear term

of (2) in order to nullify Fourier components of B with

wavenumbers k < −k0. In the following, we assume that

the above conditions are met and P+ is neglected.

We aim to study the long-time evolution of a per-

turbation to the uniform wavetrain solution B0 of (2),

namely

B0(T ) =
√

E0e
−iE0T , (4)

where E0 is the squared amplitude of the wavetrain. To

do so, we define

B =
√

E(X,T )eiφ(X,T )−iE0T , (5)

with E as the squared envelope amplitude and φ the

respective phase. The Lagrangian L

L =
i

2
(B∗∂TB − ∂BTB

∗)−H (6)

associated with (2) simplifies to

L = −E (E0 + φT )−

− 1

32E

{

+E2
X [−1 + 4E (1 + φX)] +

+ 4E2
[

−φ2
X + 4E (1 + φX)

3
]}

, (7)

where subscripts denote partial derivatives with respect

to T or X . The dynamical equations for E and φ follow

by variational differentiation of L as






∂Tφ+ ω = 0,

∂TE + ∂X (V E) = 0,
(8)

where the local frequency of the wavetrain

ω =
∂H
∂E

− ∂X

(

∂H
∂EX

)

=

=
EXX

16E
[1− 4E(1 + φX)] +

− 1

32

(

EX

E

)2

− φ2
X

8
+ E(1 + φX)3 − E0 −

1

4
EXφX , (9)

and the respective energy flux velocity

V =
1

E

∂H
∂φX

=

= −φX

4
(1− 12E) +

3

2
E +

1

8

(

E2
X

E
+ 12Eφ2

X

)

. (10)

Note that the NLS model studied in [3] is recovered if

cubic terms in (8) are neglected. The uniform wavetrain

solution (4) written in terms of E and φ is given by

v0 =





E0

0



 .

In the following we will study the linear stability of v0 to

infinitesimal perturbations in accord with the dynami-

cal equations (8).

3. Linear stability analysis. Given a small pa-

rameter ǫ, perturb v0 as

v = v0 + ǫv1, (11)

where

v1 =





E1(X,T )

φ1(X,T )



 .

From (8), the perturbation v1 satisfies the linearized

vector equation

∂Tv1 +M
0
v1 = 0, (12)

where

M
0
=











3E0∂X
−E0 (1− 12E0)

4
∂XX

1 +
1− 4E0

16E0
∂XX 3E0∂X











.

(13)

The harmonic solution of (12) is

v1 =





Aei(kX−wT ) + c.c.

φ0



 , (14)

where A and φ0 are constant parameters, and the

wavenumber k and frequency w satisfy

w2 − 6E0kw +
E0k

2

4
− k4

64
+

+ E0k
2

(

6E0 +
k2

4

)

− 3

4
E2

0k
4 = 0. (15)

The growth rate γ follows from the imaginary part of w

as

γ2 = −∆

4
=

1

64

(

1− 3µ2
)

k2
[

4µ2 −
(

1− µ2
)

k2
]

,

(16)

where the carrier wave steepness µ = 2
√
E0 and ∆ is the

discriminant of the quadratic equation (15). Note that

γ vanishes at the critical dimensionless wavenumber kc
defined by

k2c =
16E0

1− 4E0
=

4µ2

1− µ2
, (17)

and the respective frequency wc = 3E0kc. Near the in-

stability threshold kc, the cDZ equation (2) is valid if

k2c < 1 in order to have Fourier components of η with

nonnegative wavenumbers only. This yields the upper

bound µm = 0.447 for µ, which is nearly the same as

the Stokes limiting steepness 0.448.
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Thus, for µ < µm, perturbations with k < kc are un-

stable (subharmonic instability). For µ ≥ µm, the cDZ

is beyond the range of its validity. Nonetheless, the lin-

ear analysis predicts that modulational (subharmonic)

instability disappears at µc =
√

1/3 ≈ 0.577. Note that

the same threshold holds if non-local effects are retained

in the linear stability analysis [16]. For µ > µc, super-

harmonic instability appears in agreement with the sta-

bility analysis in [18] for the original Zakharov (Z) equa-

tion, which yields µc ≈ 0.5. Here, the two thresholds are

slightly different because the cDZ and Z equations are

given in terms of different canonical variables.

4. Long-time evolution of an unstable wave-

train. Near the modulation instability threshold kc,

wave dynamics can be determined by means of multiple-

scale perturbation methods. In particular, for the NLS

equation the time analysis in [3] revealed that the long-

time behavior of an unstable wavetrain evolves to a pe-

riodic state exhibiting FPU recurrence. Hereafter, we

extend this analysis to the cdZ equations (8). Introduce

the independent multiple scales ξ = ǫ2X, τ = ǫT and

consider the ordered expansion for E and φ in the small

parameter ǫ

v = v0 + ǫv1 + ǫ2v2 + ǫ3v3 + ..., (18)

where

v0 =





E0

0



 , vj =





Ej(X,T, ξ, τ)

φj(X,T, ξ, τ)



 .

To ensure instability, the perturbation wavenumber k is

set just below the critical threshold kc, i.e. k = kc−ǫ2qe,

where the parameter qe > 0 is arbitrary and of O(1).

The corresponding growth rate is of O(ǫ) and follows

from (16) as

γ = ǫ
√
χqe, χ =

E0kc (1− 12E0)

2
=

µ3
(

1− 3µ2
)

4
√

1− µ2
.

Note that γ > 0 for µ < µc, indicating linear instability

(see Fig. 1). To O(ǫ), the asymptotic solution for v is

given by

v =





E0 + ǫA(ξ, τ)eiθ + c.c.

ǫφ0(ξ, τ)



+O(ǫ2),

where θ = kcX − wcT , and the perturbation amplitude

A evolves on the slow scales ξ and τ in accord with the

NLS equation (the linear term can be removed by the

canonical transformation A → Aeiqeξ)

iχAξ = Aττ + β|A|2A− χqeA, (19)

Fig. 1. Coefficient χ as function of the carrier wave steep-

ness (µm ≈ 0.447, µc ≈ 0.577)

where

β =
2
(

1− 2µ2
) (

1− 14µ2 + 8µ4
)

(1− µ2)
3 = 2− 26µ2 +O(µ3).

This stems from removing the secularities of the O(ǫ3)

equation for v3 in the multiple-scale hierarchy [19]. The

phase φ0 depends upon A and given by

φ0(ξ, τ) = φ0(ξ, τ = 0)−
∫ τ

0

k2c
16E2

0

|A(ξ, s)|2ds.

Neglecting spatial variability, (19) simplifies to

Aττ + β|A|2A− χqeA = 0,

in agreement with [3]. This can be interpreted as the

equation of motion of a particle in a potential well

V (|A|) = −1

2
χqe|A|2 +

1

4
β|A|4.

Clearly, if nonlinearities are neglected (β = 0), the par-

ticle motion is unstable since χqe > 0 whereas, for β > 0

periodic solutions exist in terms of Jacobi elliptic func-

tions.

The Benjamin–Feir Index (BFI) associated with the

NLS equation (19) is proportional to β [9] and it mea-

sures the likelihood of occurrence of breathers. In par-

ticular, β decreases as µ increases and it vanishes at

µ1 ≈ 0.274, as clearly illustrated in Fig. 2. For µ < µ1,

the NLS equation (19) is of focusing type since β > 0,

and the perturbation A evolves to a state dominated

by breathers. However, their amplitude and likelihood

of occurrence diminish somewhat as µ increases because

the BFI vanishes at µ1. Thus, homoclinic orbits persist

for µ ≪ µ1 in agreement with the Melnikov analysis

applied to the higher-order NLS (HONLS) equation in

[20], and the recent experimental and numerical obser-

vations of higher-order breathers at sufficiently small

values of wave steepness ∼ 0.01−0.09 ([12, 14], see also
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Fig. 2. Coefficient β of the NLS equation (19) as function

of the carrier wave steepness µ (µ1 ≈ 0.274, µm ≈ 0.447,

µc ≈ 0.577)

[13]). As wave steepness increases, the BFI reduces and

it becomes nil at µ1, and breathers are suppressed. This

is confirmed by recent experimental results on the Pere-

grine breather [15] for µ ∼ 0.1. These indicate that the

“breather does not breathe”, since no return to the ini-

tial undisturbed wavetrain is observed, and its maxi-

mum amplitude is reduced in comparison to the NLS

predictions.

Despite the fact that the cDZ equation is only valid

for broadband waves with small values of wave steep-

ness, the predictions beyond µ1 may be still indicative

of the trend behavior of wave dynamics near breaking.

Indeed, cDZ may capture new nonlinear features that

are not modelled by the NLS or higher-order Dysthe

equation [21]. In particular, the BFI (and so β) is neg-

ative for µ > µ1 and the perturbation dynamics is of

defocusing type, as an indication that FPU recurrence

and breathers are suppressed.

5. Conclusions. That NLS breathers are less likely

to occur at deep water is also confirmed by an analyti-

cal solution of the excess kurtosis λcDZ
40 of the local cDZ

equation for weakly nonlinear waves [19]. This is smaller

than the excess kurtosis λNLS
40 associated with the NLS

equation [22], especially as the spectrum widens. Indeed,

correct to O(ν2) in the final-time spectral bandwidth

λcDZ

40 = λNLS

40

(

1− 4
√
3 + π

8π
ν2

)

≈ λNLS

40

(

1− 0.4ν2
)

,

where

λNLS

40 =
π

6
√
3

24µ2

ν2
.

Note that wave directionality further enhances the

attenuation of nonlinear focusing induced by modula-

tional instability accelerating wave breaking. We expect

the long-time evolution of a transversely unstable wave-

train of the three-dimensional (3D) version of the cDZ

equation [16] to obey the two-dimensional (2D) hyper-

bolic NLS equation

iχAξ = Aττ − δAζζ + β|A|2A− χqeA, (20)

where ζ = ǫY is the slow scale transverse to the main

direction of propagation and δ is a parameter that de-

pends upon the wave steepness and angular spreading.

Further studies on the existence of finite-blow up solu-

tions of (20) are desirable, and they may unveil possible

routes to wave breaking.
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