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Within the Theory of Finite Fermi systems the gyromagnetic ratios gphL of all low-lying phonons in 208Pb are

calculated. The input data, i.e. single-particle energies, single-particle wave functions, and the ph-interaction

are derived from the Energy Density Functional by Fayans et al. For the 3−1 phonon which is the most collective

state, the g
ph

L value is close to the prediction of the collective Bohr–Mottelson (BM) model. Gyromagnetic

ratios of other phonons that are included in our calculations, two 5
− states and six positive parity phonons,

differ significantly from the BM model prediction.
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Recently, a large amount of new data on magnetic

and quadrupole moments have been obtained from the

modern Radioactive Ion Beam facilities. They include

nuclei as well as distant from the beta-decay valley

and often close to the drip-lines. The bulk of the data

is collected in a very comprehensive compilation by

Stone [1]. More recent data are presented in original

articles, e.g. in Ref. [2]. Here recent data on magnetic

and quadrupole moments of a long chain of copper iso-

topes are presented and successfully described within

the Many-Particle Shell Model (MPSM) [3]. This ap-

proach takes into account all main inter-nuclear corre-

lations. However, the necessity to introduce many pa-

rameters for the effective interaction, the single-particle

mean field and the effective particle charges is a severe

deficiency of the MPSM. In addition, the domain of the

MPSM applications is, by technical reasons, limited to

nuclei with A < 90−100.

For heavier nuclei, the challenge of experimentalists

was partially responded within the self-consistent The-

ory of Finite Fermi Systems (TFFS) [4–6] for magnetic

moments [7, 8] and quadrupole moments [9–11] of odd

spherical nuclei. We mention also the first self-consistent

calculation of the quadrupole moments of the 2+1 states

[12]. The calculations were mainly restricted to semi-

magic nuclei considered in the “single-quasiparticle ap-

proximation” where one quasiparticle in the fixed state

λ = (n, l, j,m) = (ν,m) with the energy ελ is added to

the even-even core. The QRPA-like TFFS equations for
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the nuclear response to the external field, magnetic in

[7, 8] or quadrupole in [9–11], were solved on the base of

the Energy Density Functional (EDF) by Fayans et al.

[13–15]. This version of the EDF method can be inter-

preted as a kind of the realization of the self-consistent

TFFS [6]. For magnetic moments, the original Fayans

functional DF3 [14, 15] was used whereas for quadrupole

moments it was used together with its modification,

DF3-a, which was introduced in [16] to extend this ap-

proach to nuclei heavier than lead. It differs from the

original one by the spin-orbit and effective tensor terms

which are important only for the fine structure of the

single-particle spectrum in the vicinity of Fermi surface.

For the quadrupole moments, the difference between the

predictions of the two functionals turned out noticeable

with a preference to DF3-a. The same is true for the

energies and excitation probabilities of the 2+1 states in

the lead, tin and nickel isotopes [9, 17].

On the average, reasonable description of the data

was obtained in the Refs. cited above, with the accu-

racy of δµ ≃ (0.1−0.2)µN for magnetic moments, and

δQ ≃ (0.1−0.2)b for quadrupole moments. This indi-

cates that generally the single-quasiparticle approxima-

tion is valid for such nuclei. However, there are sev-

eral cases, with δµ ≃ 0.5µN for magnetic moments,

and δQ ≃ 0.5 b for quadrupole moments which can be

attributed to phonon coupling (PC) effects. The esti-

mations in [8] for magnetic moments and in [10] for

quadrupole ones have shown that this interpretation

looks reasonable and a more detailed analysis of the

PC effects is necessary. Dealing with PC corrections
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to magnetic moments [18, 19], one needs to know the

magnetic moments or the gyromagnetic ratios gphL for

each L-phonon under consideration. Usually the pre-

scription of the collective Bohr–Mottelson model [20],

gphL,BM = Z/A, is used, see e.g. [21]. In this letter, we

present results of the microscopic calculation, within the

self-consistent TFFS, of this quantity for nine low-lying

L-phonons in the double-magic 208Pb nucleus, the stan-

dard benchmark of the nuclear theory.

The diagrams for the magnetic moment of the L-

phonon are displayed in Fig. 1. The main ingredients of

Fig. 1. Diagrams for the L-phonon magnetic moment in

magic nuclei. The dashed triangle is the effective field V

of the M1 symmetry and the open blob is the vertex gL

for creating the L-phonon

these diagrams, the effective field V and the vertex gL
obey the usual TFFS equations [4]. The first one reads:

V = eqV0 + FA(ω = 0)V, (1)

where V0 is the external field, eq[V0] is the correspond-

ing local charge, F is the Landau–Migdal (LM) inter-

action amplitude, and A(ω) =
∫

G(ε)G(ε + ω)dε/(2πi)

stands for the particle-hole propagator, with G(ε) being

the single-particle Green function. The symbolic prod-

uct, as usual, means the integration over intermediate

coordinates and summation over the spin and isospin

variables. For the problem under consideration, the ex-

ternal field is

V0 = µ̂ = gl l̂+
1

2
gsσ̂, (2)

with gpl = 1, gnl = 0, gps = 5.586, and gns = −3.826. For

the local charge, in accordance with [7, 8], we add to the

standard TFFS spin and orbital parameters ζs, ζ l [4] a

new “tensor” (or “ l-forbidden”) charge ζt.

The vertex gL obeys the homogeneous equation cor-

responding to Eq. (1),

gL(ω) = FA(ω)gL(ω), (3)

and is normalized as follows [4],

(

g+L
dA

dω
gL

)

ω=ωL

= −1. (4)

For M1 symmetry of the effective field, the spin-

dependent LM amplitude enters Eq. (1):

F spin = F spin
0 + Fπ + Fρ, (5)

where the pion and ρ-meson exchange terms are added

to the central force term F spin
0 . Eq. (1) and all equa-

tions below were solved in the self-consistent basis {λ}
generated with the Generalized EDF by Fayans et al.,

E0 =

∫

E [ρ(r), η(r), ]d3r, (6)

depending simultaneously on the normal ρ and anoma-

lous η densities. In the magic nucleus 208Pb pairing is

absent and η = 0. The DF3-a version of the normal EDF

[16] is used.

All the low-lying phonons we consider have natu-

ral parity. In this case, the vertex gL possesses even

T -parity. It is the sum of two components with spins

S = 0 and 1, respectively:

gL = gL0(r)TLL0(n, α) + gL1(r)TLL1(n, α), (7)

where TJLS stand for the usual spin-angular tensor op-

erators [22]. The operators TLL0 and TLL1 have opposite

T -parities, hence the spin component should be an odd

function of the excitation energy, gL1 ∝ ωL. In this case,

the LM amplitude in Eq. (3) is also the sum,

F = F0 + F spin, (8)

where the spin-independent LM amplitude is generated

by the EDF in Eq. (6),

F0 =
δ2E
δρ2

. (9)

Isotopic indices in Eqs. (1)–(9) are for brevity omitted.

The explicit expression for the L-phonon magnetic

moment µL in magic nuclei corresponding to Fig. 1, with

the short notation |ν1〉 = |1〉, is as follows:

µL =
∑

123

(−1)L+1

(

1 L L

0 L −L

){

1 L L

j3 j2 j1

}

×

× 〈1|V (M1)|2〉
[

〈1|gL|3〉〈3|g̃L|2〉IGGG
123 (ωL) −

− 〈1|g̃L|3〉〈3|gL|2〉IGGG
123 (−ωL)

]

, (10)

where

IGGG
123 (ωL) =

=
1

ε2 − ε1

[

n1(1− n2)(1 − n3)−(1−n1)n2n3

ε1 − ε3 − ωL
+

+
n1(1− n2)n3 − (1 − n1)n2(1− n3)

ε2 − ε3 − ωL

]

+

+
n1n2(1 − n3)− (1− n1)(1− n2)n3

(ε1 − ε3 − ωL)(ε2 − ε3 − ωL)
, (11)
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with

g̃L(ω) = gL(−ω) = gL0(r;ω)TLL0(n, α)−
− gL1(r;ω)TLL1(n, α). (12)

In the 208Pb nucleus several low-lying phonons are

known with varying degree of collectivity. The low-

est one, the 3− phonon, possesses the highest collec-

tivity whereas the strength of the 5− mode is shared

between two states. Let us first analyze the accuracy

of describing the phonons themselves within our ver-

sion of the self-consistent TFFS. Their characteristics

are presented in Table 1. We see that the most col-

lective 3− level is described sufficiently well, 5−1 and

5−2 ones, a little worse. The properties of these two

states depend crucially on the two lowest unperturbed

ph-energies in the 5− channel. The experimental values

are ∆εnexp(g9/2p
−1
1/2) = 3.43MeV and ∆εpexp(h9/2s

−1
1/2) =

= 4.20MeV, i.e. the neutron component is the smaller

one. The theoretical values derived from the DF3-a func-

tional show the opposite behavior: ∆εnth(g9/2p
−1
1/2) =

= 3.84MeV and ∆εpth(h9/2s
−1
1/2) = 3.38MeV. This re-

sults in an inversion of our 5−1 and 5−2 states from the

point of view of the weight of low-energy neutron and

proton components, i.e. our 5−1 state is mainly “proton”

whereas the experimental one, “neutron”, and vice versa

for the 5−2 state. This is not so important for the B(E5)

value, but, as we will see, inverses their magnetic prop-

erties.

The lowest 2+1 state and other states of positive par-

ity are not very collective as there is no low-energy

particle-hole configurations of positive parity except

the spin-orbit doublets (h−1
11/2h9/2) for protons and

(i−1
13/2i11/2) for neutrons. In such a situation, the theoret-

ical values ωL are close to the lowest particle-hole excita-

tion energy, εp(h9/2)− εp(h11/2) or εn(i11/2)− εn(i13/2)

in our case. The single-particle energies in 208Pb we use

which are generated with the DF3-a functional agree

reasonably well on the average with the experimental

ones [16]. Unfortunately the splitting of the two spin-

orbit partners is some hundreds keV too large which is

the main reason for the too high 2+1 phonon energy. An-

other reason for this discrepancy is evidently not taking

into account the spin-orbit LM amplitude in Eq. (3) for

the gL vertex.

Let us now calculate magnetic moments and corre-

sponding gyromagnetic ratios gphL = µph
L /L of the L-

phonons in 208Pb according Eq. (10). The results are

given in Table 2. We showed separately the j- and s-

components, according to Eq. (2), with the obvious sub-

stitution of l = j − s. The subscripts n, p refer to the

neutron and proton subsystems whereas L corresponds

Table 1

Characteristics of the low-lying phonons in 208Pb, ωL

(MeV) and B(EL, up)(e2·fm2L)

Lπ ωth
L ω

exp
L

B(EL)th B(EL)exp

3−1 2.684 2.615 7.093 · 105 6.12 · 105

5−1 3.353 3.198 3.003 · 108 4.47 · 108

5−2 3.787 3.708 1.785 · 108 2.41 · 108

2+1 4.747 4.086 1.886 · 103 3.18 · 103

2+2 5.004 4.928 1.148 · 103 -

4+1 4.716 4.324 3.007 · 106 -

4+2 5.367 4.911(?) 8.462 · 106 -

6+1 4.735 - 6.082 · 109 -

6+2 5.429 - 1.744 · 1010 -

to their sum, e.g. µ
(j)
L = µ

(j)
n + µ

(j)
p . Finally we get

µL = µ
(j)
L + µ

(s)
L . There are two experimental values

of phonon gyromagnetic ratios, for the 3−1 and 5−1 . For

the first one, our prediction reasonably agrees with the

datum. For the 5−1 state, in accordance with the above

discussion, we put the calculation results found for the

second theoretical 5− state, the “neutron” one. In this

case, again there is a reasonable agreement.

To understand better the nature of the phonons we

compare our theoretical gphL values with the BM model

prediction gphL,BM = Z/A = 0.394. We see that only

for the 3−- and 4+2 -states our values are rather close

to the BM one whereas in other cases there is nothing

in common between these two theoretical predictions.

Note that in the BM model the spin-component µ
(s)
L is

absent. If we neglect in Eq. (10) the spin term of the ef-

fective field V (M1) and put ζl = 0, i.e. take V (M1) = j,

we obtain the BM value of gphL for all the states under

consideration. Thus, the microscopic value of the gyro-

magnetic ratio deviates from the classic model predic-

tion due to the spin term and non-zero value of ζl.

To check the formulas above and estimate the ac-

curacy of the calculations, it is instructive to apply

Eqs. (10), (11) to the spurious phonon Lπ = 1−, ω1− =

= 0. In this case, the term g11 in the sum of Eq. (7)

vanishes, whereas the term g10(ω) is singular at ω = 0

[6],

g10(ω) =
1√

2ωB1

∂U

∂r
. (13)

Here, U(r) is the central part of the mean-field poten-

tial generated by the energy functional (6) and B1 =

= 3m/(4πA) is the BM mass coefficient [22]. Eq. (13)

follows from the exact TFFS self-consistency relation

[23] with some simplifications and neglecting the spin-

orbit terms. The singularity in all the above expressions

containing g21 is compensated by the corresponding in-
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Table 2

Magnetic moments (in µN units) of phonons in 208Pb

Lπ µ
(j)
n µ

(s)
n µn µ

(j)
p µ

(s)
p µp µ

(j)
L

µ
(s)
L

µL g
ph
L

g
ph
L,exp [1]

3− −0.074 −0.039 −0.113 1.566 0.058 1.492 1.492 0.019 1.511 0.463 0.63(7)

5−1 −0.215 −0.478 −0.693 0.853 −0.123 0.730 0.638 −0.600 0.037 0.008 0.022(8)

5−2 −0.027 −0.018 -0.046 4.733 0.278 5.011 4.705 0.260 4.965 0.993

2+1 −0.027 0.000 −0.027 1.536 0.493 2.029 1.509 0.492 2.002 1.001

2+2 −0.027 0.004 −0.022 1.541 0.406 1.947 1.514 0.411 1.925 0.962

4+1 −0.009 −0.010 −0.018 4.017 0.449 4.466 4.008 0.440 4.448 1.112

4+2 −0.112 −0.232 −0.343 1.822 0.276 2.098 1.711 0.044 1.755 0.439

6+1 −0.005 −0.004 −0.009 6.172 0.294 6.466 6.167 0.290 6.457 1.076

6+2 −0.075 −0.147 −0.222 4.765 0.092 4.857 4.690 −0.054 4.636 0.773

tegrals of the Green functions which are proportional to

ω. This approximation for g1 violates a little the nor-

malization relation (4) leading to the value -1.074 in-

stead of -1. If we correct the normalization, we obtain

for the magnetic moment of the spurious 1−-phonon we

obtain µ(1−) = 0.403 in good agreement with the BM

gyromagnetic ratio 0.394. This calculation confirms the

self-consistency of the scheme developed above.

In our calculations, the spin component is negligible

for the 3−-state only. It confirms that this state, in-

deed, is most similar to the BM surface vibrations. The

phonon creation amplitudes gL are displayed in Figs. 2–

4 for the states 3−, 2+1 , and 5−1 , respectively. All of

Fig. 2. (Color online) Components of the vertex gL, Lπ
=

= 3
−, in 208Pb

them show the BM-like (∝ ∂U/∂r) surface maxima of

the spin-zero components which are significantly larger

than components with S = 1. However, for 5−1 and 2+1
states the spin components are not negligible. Moreover,

they possess maxima at r ≃ 6 fm where the wave func-

tions of the single-particle states in vicinity of Fermi

Fig. 3. (Color online) Components of the vertex gL, Lπ
=

= 2
+
1 , in 208Pb

Fig. 4. (Color online) Components of the vertex gL, Lπ
=

= 5
−

1 , in 208Pb

surface have their maxima too. This is true for pairs

of the radial wave functions {Rν(r)Rν′ (r)} which cor-
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respond to the term with a small energy denominator

in Eq. (11) which always exists for the phonon states

under discussion. At the same time the maxima of the

main, S = 0, components are shifted to the right by

≃ (1−2) fm due to the coherent contribution of many

high-lying ph-components. However, in this region the

wave functions under discussion are small. As a result,

for these states the contribution of the S = 1 to the

phonon magnetic moment is often rather big. This is

the main reason why the self-consistent TFFS gphL val-

ues differ from the BM ones significantly for all phonons

which collectivity is not sufficiently high. The exception

for the 4+2 phonon is occasional. For this state, as it is

seen from Table 2, the terms µ
(s)
n and µ

(s)
p cancel each

other almost completely.

To summarize, in the magic 208Pb nucleus, the gyro-

magnetic ratio gphL for the lowest 3− phonon is very close

the BM model prediction gphL,BM = Z/A. This state is the

most collective one in 208Pb. All other phonons which

we have considered are much less collective and their gphL
values deviate significantly from the BM predictions due

to the strong spin contributions to the phonon creation

vertex gL.

Generalization of the theory developed above for

non-magic nuclei where pairing is important is rather

complicated. Seven additional triangles appear similar

to the one in Fig. 1. It occurs, first, because the 3-vector

ĝL with one normal and two anomalous components ap-

pears in this case instead one vertex (3) [4, 12]. As it is

demonstrated in Figs. 5 and 6 for the collective 2+1 state

Fig. 5. (Color online) Components of the normal ampli-

tude g
(0)
2 in 200Pb

in the non-magic nucleus 200Pb, the anomalous compo-

nent g
(1)
n (2+1 ) is comparable with the normal neutron

vertex g
(0)
n (2+1 ). Although, see Fig. 5, the spin compo-

Fig. 6. (Color online) Components of the neutron anoma-

lous amplitudes g
(1)
2 and g

(2)
2 in 200Pb

nents of the normal vertices g
(1)
n,p(2

+
1 ) are small, just as

for the collective 3− state in 208Pb, the contributions of

the anomalous components can also result in deviations

from the BM model predictions. Second, in superfluid

nuclei, instead of one propagator A one deals with the

3 ⊗ 3 propagator matrix Â containing the energy inte-

grals of different products of the Green function G(ε)

and the two Gorkov functions F (1,2)(ε) [4, 12]. Such a

generalization is in a progress.
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