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The neutral ρ meson in a strong magnetic field in SU(2) lattice gauge
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The correlators of vector and pseudoscalar currents have been calculated in the external strong magnetic

field in SU(2) gluodynamics on the lattice. The masses of the neutral ρ meson with different spin projections

s = 0,±1 to the axis parallel to the external magnetic field B were calculated. The ρ meson mass with zero

spin s = 0 decreases with the growth of the magnetic field and the ρ meson masses with s = ±1 increase with

the magnetic field.
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1. Introduction. Magnetic fields of the order of

∼ 2GeV existed in the early Universe during the elec-

troweak transition [1]. The values of the magnetic fields

in the non-central heavy-ion collisions can reach the

value 15m2
π ∼ 290MeV2 [2].

STAR collaboration has detected the chiral magnetic

effect at RHIC in the non-central collisions of gold ions

[3–6]. Later this effect was also observed in the exper-

iment ALICE at LHC [7]. The strong magnetic field

also results to the modification of the phase diagram

of QCD. Phenomenological models show that the criti-

cal temperature of the transition between the phases of

confinement and deconfinement varies with increasing of

the external magnetic field B, and the phase transition

becomes of the first order [8].

The growth of the phase transition temperature Tc
was predicted by the models of Nambu–Jona–Lasinio

type: NJL, EPNJL, PNJL [9], and PNJL8 [10], the

Gross–Neveu model [11, 12], as well as the first calcula-

tions on the lattice QCD with two quarks [13]. However,

the lattice calculations in QCD with Nf = 2+1 revealed

that Tc decreases with increasing of B value [14]. The

chiral perturbation theory gives the decrease of Tc with

the growth of field value [15].

It has been shown in the framework of the Nambu–

Jona–Lasinio model that in the presence of sufficiently

strong magnetic fields (Bc = m2
ρ/e ≃ 1016 T) QCD vac-

uum becomes a superconductor [16] along the direction

of the magnetic field. The transition to the supercon-

ducting phase is accompanied by a condensation of the

charged ρ mesons. Calculations on the lattice [17] also

indicate the existence of the superconducting phase. We

have investigated the behavior of the masses of the neu-

tral ρ with different spin projection s = 0 and ±1 to

the direction of the magnetic field. Quark propagators

were calculated with the chiral invariant fermionic op-

erator. In [18] the mass of neutral vector ρ meson was

calculated in the relativistic quark-antiquark model, the

mass of neutral ρmeson with zero spin does not vanishes

with the growth of the magnetic field in the confinement

phase in contradiction with the results of [16].

2. Details of the calculations. The improved

Symanzik action has been used for the generation of

SU(2) gauge field configurations similarly to our pre-

vious work [19]. The calculations were performed on

symmetric lattices with different lattice volumes 144,

164, 184 and lattice spacings a = 0.0681, 0.0998, and

0.138348 fm.

Fermionic spectrum in the background of SU(2)

gauge fields were calculted using a chiral-invariant over-

lap operator, proposed by Neuberger [20]. This operator

allows to explore the theory without chiral symmetry

breaking.

In a continuous space the analogue of this operator is

the Dirac operatorD = γµ(∂µ−iAµ), the corresponding

Dirac equation is

Dψk = iλkψk. (1)

The Neuberger overlap operator allows to calculate the

eigenfunctions ψk and the eigenvalues λk for a test quark

in an external gauge field configurationsAµ. Aµ is a sum

of SU(2) gauge fields and the external abelian uniform

magnetic field. Eigenfunctions of the Dirac operator al-

low to construct operators and correlators.

Abelian fields interact with quarks, so for the intro-

duction of the external magnetic field it’s necessary to

perform the following substitution

Aµ ij → Aµ ij +AB
µ δij , (2)
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AB
µ (x) =

B

2
(x1δµ,2 − x2δµ,1). (3)

To match this change with the lattice boundary condi-

tions the twisted boundary conditions for fermions have

been used as described in [21].

The value of magnetic field on the lattice is quan-

tized

qB =
2πk

(aL)2
, k ∈ Z, (4)

where q = −1/3 e is the charge of d-quark, there is one

type of fermions in the theory, a is the lattice spacing

in physical units. The quantization condition imposes

the limit on the minimum value of the magnetic field.

For our calculations it equals to 0.386 GeV2 for lattice

volume 164 and lattice spacing 0.1383 fm.

For each value of the quark mass in the interval

mqa = 0.01−0.8 statistical independent configurations

of the gluon field have been used.

3. Calculation of the observables. The following

observables were calculated

〈ψ†(x)O1ψ(x)ψ
†(y)O2ψ(y)〉A, (5)

where O1, O2 = γ5, γµ,ν are Dirac gamma matrices,

µ, ν = 1, . . . , 4. In the Euclidean space ψ† = ψ̄ [22]. The

correlators (5) are defined by the Dirac propagators,

for their calculation the inverse matrix for the massive

Dirac operator 1/(D+m) should be found. For M low-

est eigenstates Dirac operator it is represented by the

sum
1

D +m
(x, y) =

∑

k<M

ψk(x)ψ
†
k(y)

iλk +m
. (6)

In this work M = 50 was used. On the lattice the ob-

servables (5) have the form

〈ψ̄O1ψψ̄O2ψ〉A = (7)

=
∑

k,p<M

〈k|O1|k〉〈p|O2|p〉 − 〈p|O1|k〉〈k|O2|p〉
(iλk +m)(iλp +m)

The first term in the numerator represents a discon-

nected part, and the second one with a minus sign – a

connected part. The first term is less than the second

one, has large statistical errors, does not affect the re-

sult, and so for further calculations only the connected

part of the correlator was used.

The mass of a neutral ρ meson was extracted from

the correlator of vector currents 〈jVµ (x)jVν (y)〉A, where

jVµ (x) = ψ†(x)γµψ(x). The mass with a zero spin projec-

tion was calculated, which corresponds to the correlator

of vector currents along the direction of the magnetic

field. In the expression (7) it corresponds to the choice

of O1, O2 = γ3. The correlator 〈jPS(x)jPS(y)〉A gives

the mass of π meson, where jPS = ψ†(x)γ5ψ(x) is the

pseudoscalar current.

For the calculation of meson masses we used the

method, based on the spectral expansion of the lattice

correlation function

C(nt) = 〈ψ†(0, nt)O1ψ(0, nt)ψ
†(0, 0)O2ψ(0, 0)〉A =

=
∑

k

〈0|O1|k〉〈k|O†
2|0〉e−ntaEk , (8)

C(nt) = A0e
−ntaE0 +A1e

−ntaE1 + ..., (9)

where A is some constant value, E0 is the energy of the

lowest state, for the particle with average zero momen-

tum p = 0 its energy coincides with its mass E0 = m0,

E1 is the energy of the first excited state, a is the lattice

spacing, nt is the time coordinate on the lattice. From

the expansion (9) one can see that for large values nt the

main contribution comes from the ground energy state.

Due to periodic boundary conditions the contribu-

tion of the ground state into the propagator of a meson

has the form

f(nt) = A0e
−ntaE0 +A0e

−(NT−nt)aE0 =

= 2A0e
−NTE0/2 cosh[(NT − nt)aE0]. (10)

The mass value of the ground state mass can be ex-

tracted, fitting the correlator by the function (10), nt is

the lattice site number in the time direction.

4. Results. At first we calculate the mass of neutral

π meson on the lattice from the correlators of the pseu-

doscalar currents CPSPS(nt) = 〈jPS(0, nt)j
PS(0, 0)〉A,

where jPS(0, nt) = ψ̄(0, nt)γ5ψ(0, nt). The π mass is

shown on the Fig. 1 for the different lattice volumes and

Fig. 1. The mass of the neutral π meson extracted from the

CPSPS(nt) versus the squared value of the magnetic field

for the renormalized and nonrenormalized quark mass

spacings, the masses after lattice quark renormalization

are also represented.
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The masses of the vector meson were calculated for

various magnetic field values. On the lattice the quark

masses is renormalized by some quantity δmren

lat
, which

depends on the lattice parameters – volume and spacing

and magnetic field value. The magnitude of this renor-

malization is easy to estimate, since the squared mass

of π meson is a linear function of the quark mass in

accordance with the chiral perturbation theory.

To take into account the renormalization of the

quark mass we calculate the π meson mass for various

values of mq (the bare quark mass which enter into lat-

tice lagrangian). By extrapolation procedure to small

values of mq we fix the value of the bare quark mass

mq0 corresponding to the physical value of the π me-

son mass at zero magnetic field (135 MeV). We calculate

the masses of ρ for several values of mq in the interval

mq = 0.01−0.8, perform the fits and find the coefficients

ai and bi
mρ(s = 0) = a0 + a1mq, (11)

mA(s = 0) = b0 + b1mq. (12)

Then we extrapolate mρ(mq) to the physical values

mρ(mq0 ) at mq = mq0 using the equations (11) and

(12).

The components of the correlators of vector cur-

rents were calculated, the diagonal components are es-

sentially nonzero, while the nondiagonal ones are zero

within the error bars. The external magnetic field is

directed along the third coordinate axes. The corre-

lators of vector currents perpendicular to the mag-

netic field are CV V
11 (nt) = 〈jV1 (0, nt)j

V
1 (0, 0)〉A and

CV V
22 (nt) = 〈jV2 (0, nt)j

V
2 (0, 0)〉A, where jV1 (0, nt) =

ψ̄(0, 0)γ1ψ(0, nt) and so on. The masses of the neu-

tral mesons with zero spin projection to the magnetic

field are extracted from the correlator CV V
33 (nt) =

= 〈jV3 (0, nt)j
V
3 (0, 0)〉A. The masses with spin s = ±1

are found from CV V (s = 1) = (CV V
11 + iCV V

22 )/
√
2 and

CV V (s = −1) = −(CV V
11 − iCV V

22 )/
√
2.

At Fig. 2 the mass of the neutral ρ meson with zero

spin is shown versus the value of the magnetic field. For

the all lattice volumes 164, 184 and spacings a = 0.0998,

0.11558 fm the mass decreases with the magnetic field.

The points are connected by splines to guide the eyes.

Fig. 3 shows the mass of the ρ meson mass with

nonzero spin versus the field value. The masses with

spin s = ±1 projections to the magnetic field direction

increase with the field.

Unfortunately on the lattice in the presence of the

magnetic field the quantum numbers of mesons are not

precise. The mixing takes place because of the interac-

tion between photons and the vector quark currents and

can occur between neutral pion and the state of ρ meson

Fig. 2. The mass of the neutral vector ρ meson with zero

spin projection s = 0 versus the value of the external

magnetic field for the lattice volumes 164, 184 and lattice

spacing a = 0.0998, 0.1155 fm

Fig. 3. The mass of the neutral vector ρ meson with

nonzero spin projection s = ±1 versus the value of the

external magnetic field for the lattice volumes 164, 184

and the lattice spacing a = 0.0998, 0.1155 fm

with zero spin. No severe methods occurs to disentan-

gle these two states in the magnetic field. However we

have indications that the masses of vector meson with

s = ±1 definitely increse in our SU(2) theory. The inves-

tigations of the mass behavior in QCD with dynamical

quarks present the huge interest.

5. Conclusions. In this work we explore the masses

of the neutral π and ρ mesons in the background of

the strong magnetic field of the hadronic scale in the

confinement phase. We observe that the masses with

zero spin projection to the magnetic field differ from

the masses with spin projection s = ±1. The masses

with s = 0 decrease with the magnetic field, but the

masses with s = ±1 increase with the field. We con-

sider this phenomena to be the result of the anisotropy,

which the strong magnetic field creates. We do not ob-

serve any condensation of neutral mesons, so there are
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no evidences of superfluidity in the confinement phase.

However the presence of superconducting phase at high

values of the magnetic field B [23] in QCD is a hot topic

for discussions. The condensation of charged ρ mesons

would be an evidence of the existence of the supercon-

ductivity in QCD.
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