Экспериментальная проверка теории эффекта "Естественное сильное сужение" линий Мёссбауэра и более общего эффекта "Коллапс СТС" из-за флуктуаций контактного поля Ферми. Роль виртуальных переходов в этих эффектах

*С.В. Карягин*¹⁾

Отдел строения вещества им. Гольданского, Институт химической физики им. Семенова РАН, 119991 Москва, Россия

Поступила в редакцию 14 октября 2013 г.

Для проверки теории эффекта "Естественное сильное сужение" (ЕСС) линий Мёссбауэра на долгоживущих изомерах и более общего эффекта "Коллапс сверхтонкой структуры" (КСТС) из-за флуктуаций контактного поля Ферми (С. В. Карягин, Письма в ЖЭТФ **98**(3), 197 (2013)) по данным группы Давыдова (Ю. Д. Баюков, А. В. Давыдов, Ю. Н. Исаев и др., Письма в ЖЭТФ **90**(7), 547 (2009)) выполнен анализ выхода γ -квантов 88.034 кэВ из серебряной пластины с изомером ^{109m} Ag в двух вариантах: 1) СТС разрешена, выход зависит от угла ψ между волновым вектором кванта и внешним полем \mathbf{H}_{ex} ; 2) выход не зависит от ψ из-за КСТС. Показано, что вариант 2 ближе к истине, т.к. экспериментальные средние числа отсчетов при $\psi = 0$ и $\sim \pi/2$ отличаются лишь на систематическую ошибку, одну и ту же при 4.2 и 295 K, и, кроме того, при исключении резонанса числа отсчета не должны зависеть от ψ , что в варианте 1 сильно нарушено, а в 2 хорошо выполняется. Получено пороговое условие КСТС для поля Ферми с учетом виртуальных переходов. Коллапс СТС осуществим при любых временах жизни уровней ядра на любых переходах не только в гамма, но и в других диапазонах излучения. Он ведет к 100-процентной деполяризации ядер и излучения. Для оценки поля Ферми из опытов необходимо иметь $|\mathbf{H}_{ex}| \sim 10^4 \Gamma c.$

DOI: 10.7868/S0370274X13230112

Чтобы убедиться в существовании эффекта естественного сильного сужения (ЕСС) линий Мёссбауэра на долгоживущих изомерах, потребовалось 30 лет совершенствования опытов и развития идей (см. [1– 8] и ссылки там), включая создание Гравитационного Спектрометра [1, 8], значительно повысившего надежность опытов, и объяснение ЕСС [3] модуляцией сверхтонких взаимодействий (СТВ) флуктуациями контактного поля Ферми. Пока только теория [3] дала тот же порядок ширины линии Γ_{line} , что и опыты [1, 4–8]. В [3] было показано, что, по существу, ЕСС – это коллапс сверхтонкой структуры (СТС). Коллапс СТС (КСТС) из-за флуктуаций поля Ферми возможен на большем круге ядер и сред, чем ЕСС.

Анализ опытов [1] выполнен в ней в предположении, что СТС разрешена, когда резонансное сечение поглощения γ -кванта σ_{res} зависит от угла ψ между волновым вектором γ -кванта и магнитным полем [2]. Но так как СТС коллапсирует [3], σ_{res} не должно зависеть от ψ . Чтобы выбрать разрешение СТС или КСТС, в ч. 1 статьи выполнен сравнительный анализ этих вариантов. Затем ищется полная ширина линии Γ_{line} . Относительная ширина $k_{\text{line}} = \tau \Gamma_{\text{line}}$ сравнивается со вкладом k_{c line} от поля Ферми по простой модели усреднения СТВ [3] и по более совершенной модели (ч. 2). В обеих моделях усреднение СТВ в верхнем и нижнем состояниях ядра велось на отрезке времени усреднения $\tau_{\rm av} = \tau p$, где τ – время жизни того уровня у-перехода, который живет короче, $p \geq 1$ [9]. Вместе с тем в новой модели ядро много раз виртуально меняет состояние еще до наступления реального перехода. При этом базовая модель модуляции СТВ полем Ферми остается той же, что и в [3]. Коллапс СТС в обновленной таким образом теории осуществим при любом τ на любых переходах не только в гамма, но и в других диапазонах излучения. В ч. 3 дан ряд формул и понятий, используемых вч.1.

1. Сравнительный анализ эксперимента [1] в вариантах разрешения СТС и коллапса КСТС. Опыты [1] были выбраны для проверки теории ЕСС–КСТС [3] по двум причинам. Во-первых, постоянство температуры в опытах [1,8] избавляет от вариаций геометрии опыта при больших измене-

¹⁾e-mail: akaryagina@gmail.com

789

Таблица 1

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
θ_i, \mathbf{K}	+7	+3	+1	+0.67	+0.33	0	-0.33	-0.67	-1	-3	-7
N_{aLi}	112834	112788	112813	112646	112735	112737	112690	112808	112742	112906	112919
n_{aLi}	24	26	27	26	26	51	26	25	24	24	19
σ_{aLi}	69	66	65	66	66	47	66	68	69	69	78

Опыты [1] при 4.2 К в фазе A (с током в кольцах Гельмгольца, $\psi = 0^{\circ *)}$)

*) n_{aLi} – число измерений в фазе A при угле θ_i ; N_{aLi} – среднее число отсчетов на измерение в фазе A при угле θ_i ; $\sigma_{Li} = (N_{aLi}/n_{aLi})^{1/2}$ – теоретическая среднеквадратичная ошибка для N_{aLi} .

Таблица 2

Опыты [1] при $T=4.2\,\mathrm{K}$ в фазе В (без тока в кольцах Гельмгольца, $\psi_i=83^\circ- heta_i^{\,*)})$

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
N_{bLi}	112576	112732	112829	112834	112771	112711	112670	112770	112759	112826	112817
n_{bLi}	24	26	26	26	26	51	26	26	24	24	19
σ_{bLi}	69	66	66	66	66	47	66	66	69	69	76

^{*)} n_{bLi} – число измерений в фазе В при угле θ_i ; N_{bLi} – среднее число отсчетов на одно измерение в фазе В при угле θ_i ; $\sigma_{bLi} = (N_{bLi}/n_{bLi})^{1/2}$ – теоретическая ср.кв. ошибка для N_{bLi} .

ниях температуры ΔT , характерных для ранних работ [4–7]. При $\Delta T \sim 100$ К малозаметные изгибы и кручения в системе источник–криостат–детектор, меняя геометрию опыта, могут имитировать ЕСС. Во-вторых, измерения в [1] более стабильны и надежны, нежели в [8].

1.1. Независимость усредненных данных опытов [1] от направления магнитного поля. Данные таблиц 1, 2, 3, 4, предоставленные проф. Давыдовым в 2010 г., соответствуют графикам в [1]. Число уквантов, регистрируемых на интервале измерения 750 с, называется числом отсчетов N в измерении. На рис. 2 статьи [1] единице ординаты соответствует 24674.2 отсчета за 750 с. Все числа отсчета N первичных измерений поделены на временные факторы распада ¹⁰⁹Cd, приводящие их к единому моменту измерения. Приведенные числа N не требуют учета распада материнского изотопа ¹⁰⁹Cd. Числа отсчетов N в таблицах являются арифметическими средними по *п* первичным измерениям, приведенным к одному началу. Вместе с тем единые моменты для измерений при 4.2 и 295 K отличаются на $\sim 109 \,\text{дн} \sim 9.4 \cdot 10^6 \,\text{c}.$ Числа отсчетов N снабжены индексами условий измерения: а – фаза А, т.е. магнитное поле вдоль оси наблюдения (ось центр пластины-центр входного окна детектора); *b* – фаза В, т.е. поле почти нормально к оси наблюдения ($\psi_i = 83^\circ - \theta_i$); L – температура пластины 4.2 K; R – температура пластины 295 K; i – номер угла наклона θ_i оси наблюдения к горизонтальной плоскости; соответствие i и θ_i указано в сносках к табл. 1 и 3. Так, $N_{aL-5} = 112834$ получено усреднением по $n_{aL-5} = 24$ приведенным числам первичных измерений при $\psi = 0^{\circ}$, $T = T_L = 4.2$ К, $\theta = \theta_{-5} = +7^{\circ}$. Результаты сравнения фаз А и В помещены в табл. 5 и 6.

Определим средневзвешенные (ср.вз.) числа $N_{aL} = \sum_i N_{aLi} w_{ai}$ и $N_{bL} = \sum_i N_{bLi} w_{bi}$ с весами $w_{ai} = \sigma_{aLi}^{-2} / \sum_i \sigma_{aLi}^{-2} \cong n_{aLi} / \sum_i n_{aLi}$ и $w_{bi} = \sigma_{bLi}^{-2} / \sum_i \sigma_{bLi}^{-2} \cong n_{bLi} / \sum_i n_{bLi}$ при $i = -4, -3, \ldots, +4, +5$, т.е. с числом учтенных в усреднении точек m = 10. Тогда $N_{aLw} = 112778$, $N_{bLw} = 112765$. В точке bL-5 имеем явный выброс числа отсчетов, т.к. $N_{bL-5} - N_{bLw} = 189 \cong 2.7\sigma_{bL-5}$. Поэтому при усреднениях в обеих фазах, А и В, точка i = -5 отбрасывается.

Сравнение чисел отсчета в фазах А и В при 4.2 К дано в табл. 5, содержащей девиации $D_{abLi} = N_{aLi} - N_{bLi}$. Их среднеквадратические (ср.кв.) ошибки $\sigma_{abLi} = (\sigma_{aLi}^2 + \sigma_{bLi}^2)^{1/2}$. Их разбросы $\delta_{abLi} = D_{abLi} - D_{abL}$. Средневзвешенная девиация $D_{abL} = N_{aL} - N_{bL} = 13$ со ср.кв. ошибкой $\varepsilon D_{abL} = [\Sigma_i \sigma_{abLi}^2 / m(m-1)]^{1/2} \sim 32$, т.е. $D_{abL} \ll \varepsilon D_{abL}$. При этом $|\delta_{abLi}| < \sigma_{abLi}$ всюду, кроме точек i = -5 и -2. Отметим, что усреднение по 11 точкам (отмечено штрихом) $i = -5, -4, \ldots, +4, +5$ дает втрое большую величину ср.вз. девиации, $D'_{abL'} = N'_{aL} - N'_{bL} = 33.4 \sim 3D_{abL}$.

Тот факт, что D_{abL} и D'_{abL} отличаются от нуля, не может объясняться различием резонансного поглощения в фазах A и B. Действительно, согласно [1, 2]

Таблица 3

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
θ_i, \mathbf{K}	+7	+3	+1	+0.67	+0.33	0	-0.33	-0.67	-1	-3	-7
N_{aRi}	95770	95815	95797	95856	95930	95932	95909	95922	95949	95933	95763
n_{aRi}	22	22	23	23	22	22	22	22	20	20	20
σ_{aRi}	67	67	65	65	67	67	67	67	70	70	70

Опыты [1] при $T=T_R=295\,{
m K}~(R\equiv{
m Room})$ с током в кольцах Гельмгольца (фаза A, $\psi=0^{\circ~*)})$

 $^{*)} N_{aRi}$ – среднее число отсчетов на одно измерение A; n_{aRi} – число измерений типа A при $heta= heta_i.$

Таблица 4

Опыты [1] при 295 K без тока в кольцах Гельмгольца ($\psi_i = 83^\circ - \theta_i$)

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
N_{bR}	_i 95772	95695	95752	95938	95891	95954	95829	95829	95835	96029	95721
n_{bR}	_i 21	23	21	21	21	21	21	21	20	20	20
σ_{bR}	_i 67	65	68	68	67	67	67	68	70	70	70

резонансное поглощение в фазе А в 2.06 раза больше, чем в фазе В. Значит, должно выполняться неравенство $D_{abL}, D'_{abL} < 0.$ В то же время опыты [1] дают прямо противоположный результат: $D_{abL}, D'_{abL} > 0.$ С другой стороны, согласно теории ЕСС [3] должно выполняться равенство $D_{abL}, D'_{abL} = 0$, что явно не так. Такое противоречие результатов $D_{abL} = 13$, $D'_{abL'} = 33.4$ обеим теориям можно объяснить либо различием выборок А и В, либо(и) систематической ошибкой. Например, в фазе В ток выключен, электрическая цепь разомкнута и поэтому слабее заземлена. Значит, наводки на аппаратуре (в том числе на детекторе) усиливаются при переходе от фазы А к фазе В, что может привести к небольшому (на $13/112748 \sim 10^{-4} = 0.01\%$) уменьшению числа отсчетов в фазе В. Наводки могут быть разной природы, включая радиоволны и статическое электричество, создаваемое, например, трением потоков (в том числе конвективных) воздуха и других сред об элементы установки. Ожидание систематической ошибки в фазе В (дефектность выборки в фазе В) подкрепляется наличием в ней трехкратного выброса для N при i = -5, когда $D_{abL-5} = 258$. Усредненная по всем m=11точкам ср.вз. девиация $D_{abL}^\prime \sim 33.4$ при $4.2\,{\rm K}$ ближе к ср.вз. девиации $D'_{abL} = 30.0$ при 295 K, чем ср.вз. девиация $D_{abL} \sim 13$ при 4.2 K, вычисленная по m = 10 точкам.

Рассмотрим теперь табл. 3 и 4 для контрольных опытов при 295 К. От конца опытов при 4.2 К до начала опытов при 295 К прошло ~109 дн. ~ 9.4 $\cdot 10^6$ с, что составило заметную долю от времени распада материнского изотопа $\tau_{109Cd} = 5.8 \cdot 10^7$ с. Это объясняет сильное уменьшение чисел отсчета в табл. 3 и 4 в сравнении с табл. 1 и 2.

По аналогии с табл. 5 строим табл. 6, введя девиации $D_{abRi} = N_{aRi} - N_{bRi}$. Их ср.кв. ошибки $\sigma_{abRi} = (\sigma_{aRi}^2 + \sigma_{bRi}^2)^{1/2}$, веса $w_{aRi} = n_{aRi}/\Sigma_i n_{aRi}$, $w_{bRi} = n_{bRi}/\Sigma_i n_{bRi}$, ср.вз. числа отсчетов $N'_{aR} = \Sigma_i N_{aRi} w_{aRi} = 95870$, $N'_{bR} = \Sigma_i N_{bRi} w_{bRi} = 95840$, ср.вз. девиация $D'_{abR} = N'_{aR} - N'_{bR} = 30$, разбросы девиации $\delta_{abRi} = D_{abRi} - D'_{abR}$, ср.кв. ошибка в ср.вз. девиации $\varepsilon D'_{abR} = [\Sigma_i \sigma_{abRi}^2 / m(m-1)]^{1/2} = 32$, т.е. $D'_{abR} \sim \varepsilon D'_{abR}$. Явных выбросов в табл. 3 и 4 нет. Поэтому все усреднения при 295 К ведутся по m = 11 точкам $i = -5, -4, \ldots, +4, +5$, что отмечается штрихом: $D'_{abR}, N'_{aR}, N'_{bR}$, и т.д.

Тот факт, что D'_{abR} заметно больше нуля, не может объясняться зависимостью резонансного сечения от направления магнитного поля, так как при 295 К факторы Мёссбауэра f, f' равны нулю и резонанса нет. Однако $D'_{abR} = 30$ можно объяснить систематической ошибкой так же, как это было сделано выше при 4.2 К. Хотя $D_{abL} = 13$ при 4.2 К и $D'_{abR} = 30$ при 295 К лишь примерно одинаковы, имеем (см. текст под табл. 5) $D'_{abL} = 33.2 \cong D'_{abR}$. Это указывает на общую природу сдвигов при 4.2 и 295 К как одной и той же систематической ошибки $D_{sys} = 13 \pm 30$.

Итак, усредненные по углам θ_i числа отсчета с точностью до систематической ошибки ~ 30 не зависят от выбора фазы А или В, что является одним из признаков КСТС. Дефектной (содержащей систематическую ошибку) является, скорее всего, выборка в фазе В.

Рассмотрим теперь более сильные аргументы в пользу КСТС. Для этого сравним результаты анализа данных табл. 1 и 2 при разрешенности СТС, принятой в [1] (см. ниже п. 1.2 и табл. 7), с резуль-

Таблица 5

Сравнение фаз А и В при 4.2 К

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
D_{abLi}	258	56	-16	-188	-36	26	20	38	13	81	102
σ_{abLi}	98	93	93	93	93	68	93	95	98	98	102
δ_{abLi}	229	27	-45	-217	-65	-3	-9	9	-16	52	73

Таблица 6

Сравнение чисел отсчета в фазах А и В при 295 К

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
D_{abRi}	-2	120	45	-82	39	-22	80	93	114	-96	4
σ_{abRi}	94	93	94	94	94	94	94	95	99	99	99
δ_{abRi}	-32	90	15	-122	9	-52	50	63	84	-126	-26

татами анализа при КСТС [3] (см. п. 1.3 и табл. 8). Результаты анализа развернуты в табл. 7 и 8 по относительной ширине $k = \Gamma \tau$, где Γ – полная ширина линии, τ – время жизни изомера ^{109m} Ag. Основные данные табл. 7 и 8 включают критерии χ^2 на степень свободы [10] и (главная новинка настоящей работы) числа отсчета, скорректированные к условиям без γ резонанса (если, например, f, f' = 0 или $k = \infty$). В настоящей работе в отличие от [1] выход квантов усреднен по углам их вылета, ограниченным пластиной и входным окном детектора (ч. 3). Исправлены также (ч. 3) неточности и опечатки в формулах для выходов квантов, замеченные в статье [1].

1.2. Результаты анализа при разрешенной СТС (см. табл. 7).

1. Критерии χ^2 на степень свободы. Согласно [1, 2] для перехода ^{109m} Ag⁻¹⁰⁹ Ag сечения γ -резонансного поглощения составляют $\sigma_a = \sigma_0 \cdot 17/64$ в фазе A, $\sigma_b = \sigma_a/2.06$ в фазе В и σ_0 при КСТС. Определение χ_a^2 и χ_b^2 будет дано в ч. 3 статьи. Индексы "a" и "b" соответствуют фазам A и B. В минимумах χ^2 имеем $k_{a\min} = 5.17$, $\chi_{a\min}^2 = 0.71$ и $k_{b\min} = 6.67$, $\chi_{b\min}^2 = 0.68$ в отличие от [1], где $k_{a\min} \sim k_{b\min} \sim 7$, $\chi_{a\min}^2 = 0.62$, $\chi_{b\min}^2 = 0.64$. Таким образом, различие χ^2 -результатов между табл. 7 и [1] невелико. Уменьшение ширины k_{\min} , ожидаемое в [1] при усреднении выхода квантов по углам их вылета, заметно лишь в фазе A.

2. Числа отсчетов, скорректированные к отсутствию резонанса. Если бы резонансное поглощение исчезло, то числа $N_{a\,i}$, $N_{b\,i}$ заменились бы числами

$$N_{a\,{\rm Cr}\,i} = N_{a\,i}Y(\infty)/Y_{a\,i}(k), \ N_{b\,{\rm Cr}\,i} = N_{b\,i}Y(\infty)/Y_{b\,i}(k),$$
(1)

Письма в ЖЭТФ том 98 вып. 11-12 2013

которые мы назовем скорректированными (Cr = =corrected). Здесь $Y(\infty) = Y_{el}$ – выход квантов в отсутствие резонанса, когда резонансная прозрачность $T_r = 1$ (см. (12)), т.е. при $k = \infty$ или (и) при f = 0. Выход $Y(\infty)$ не зависит от θ_i и ψ , т.е. от *i* и фаз A, B. Согласно (12) $Y(\infty)$ есть электронная прозрачность T_e , усредненная по углам φ, φ_1 отклонения волнового вектора от линии наблюдения. С точностью до машинного нуля $Y(\infty) = Y_{el} = 0.503\,534\,701\,081\,222$, при условии задания всех исходных параметров с такой точностью. Введем критерий совершенства, не зависящий от критерия минимума χ^2 и состоящий в том, что при верном выборе модели ЕСС, точном расчете выходов $Y_{a\,i}(k), Y_{b\,i}(k), Y_{el}$, отсутствии случайных и систематических ошибок и ширине k, соответствующей реальности, числа N_{a Cri} и N_{b Cri} не должны зависеть ни от угла θ_i , ни от выбора фаз A, B. Иными словами, в идеальных условиях должно выполняться $N_{a\,{\rm Cr}\,i} - N_{a\,{\rm Cr}\,i'} = N_{b\,{\rm Cr}\,i} - N_{b\,{\rm Cr}\,i'} = N_{a\,{\rm Cr}\,i} - N_{b\,{\rm Cr}\,i'} = 0$ при любых *i*, *i*'. Для подавления случайных ошибок введем ср.вз. числа $N'_{a \operatorname{Cr}}, N_{b \operatorname{Cr}}$:

$$N'_{a \,\mathrm{Cr}} = \Sigma_i w_{a \,i} N_{a \mathrm{Cr} \,i} \ (i = -5, -4, \dots, 4, 5),$$

$$N_{b \,\mathrm{Cr}} = \Sigma_{i'} w_{b \,i'} N_{b \,\mathrm{Cr} \,i'} \ (i' = -4, -3, \dots, 4, 5),$$

(2)

где веса $w_{a\,i} = \sigma_{aLi}^{-2}/(\Sigma_i \sigma_{aLi}^{-2}), w_{b\,i'} = \sigma_{bLi'}^{-2}/(\Sigma_{i'} \sigma_{bLi'}^{-2})$ нормированы на 1: $\Sigma_i w_{a\,i} = \Sigma_{i'} w_{b\,i'} = 1$. Тогда при достаточно больших выборках А, В числа $N'_{a\rm Cr}$ и $N_{b\rm Cr}$ должны совпасть с хорошей точностью при удачной модели ЕСС, верности $Y_{a\,i}(k), Y_{b\,i}(k), Y_{el}$, отсутствии систематических ошибок и верном значении k. Поэтому отличие ср.вз. девиации $D_{ab\rm Cr} =$ $N'_{a\rm Cr} - N_{b\rm Cr}$ от нуля может быть связано с система-

k	1	2	3	4	5.17	6.67	10	15	25	50	∞
χ^2_a	4.70	1.80	1.01	0.77	0.71	0.75	0.93	1.13	1.32	1.44	1.49
χ_b^2	1.82	1.03	0.80	0.72	0.69	0.68	0.69	0.72	0.75	0.76	0.77
$N'_{a\mathrm{Cr}}$	113181	113079	113023	112986	112956	112929	112891	112860	112831	112806	112778
N_{bCr}	112981	112924	112893	112873	112857	112843	112823	112807	112792	112779	112765
D_{abCr}	200	155	130	113	99	86	68	53	39	27	13
d_{abCr}	4.0	4.6	4.8	4.6	4.2	3.6	2.7	2.0	1.4	0.9	0.4
εD_{abCr}	50.6	33.4	26.8	24.4	23.6	23.9	25.3	27.0	28.5	29.4	29.7
$\varepsilon_{N'a\mathrm{Cr}}$	42.5	26.7	19.7	17.2	16.5	17.0	18.8	20.7	22.4	23.5	23.8
ε_{Nb} Cr	27.4	20.6	18.2	17.3	16.9	16.8	16.9	17.2	17.5	17.7	17.8
Комментарии					$\chi^2_{a\mathrm{min}}$	$\chi^2_{b\mathrm{min}}$					$D_{ab\mathrm{Cr}}=0$

Анализ в случае разрешенной CTC, когда выход γ -квантов зависит от направления магнитного поля

 $^{*)}$ Данные в χ^2 -минимумах выделены жирным шрифтом.

тической ошибкой, малостью выборок А, В, неверным расчетом выходов $Y_{a\,i}(k), Y_{b\,i}(k), Y_{el}$, неудачностью модели ЕСС и с несоответствием пробной ширины k реальности. Относительная ср.вз. девиация $d_{ab\mathrm{Cr}} = D_{ab\mathrm{Cr}} / \varepsilon D_{ab\mathrm{Cr}}$ – качественная мера дефектов анализа. Здесь $\varepsilon D_{ab\mathrm{Cr}} = (\varepsilon_{N'a\mathrm{Cr}}^2 + \varepsilon_{Nb\mathrm{Cr}}^2)^{1/2}$ – ср.кв. ошибка в D_{abCr} , $\varepsilon_{NaCr} = \sigma_{N'aCr}/m_a^{1/2}$ – ср.кв. неточность в определении числа $N'_{a\mathrm{Cr}}$, $\sigma_{N'a\mathrm{Cr}}$ = $= [\Sigma_i w_{ai} (N_{aCr\,i} - N_{aCr})^2]^{1/2} [m_a/(m_a - 1)]^{1/2} - \text{ср.кв.}$ разброс отклонений N_{aCri} от N'_{aCr} , $m_a = 11$ – число членов в сумме. В фазе В $\varepsilon_{NbCr} = \sigma_{NbCr} / m_b^{1/2}$ $\sigma_{NbCr} = [\Sigma_i w_{b\,i'} (N_{bCr\,i'} - N_{bCr})^2]^{1/2} [m_b/(m_b - 1)]^{1/2},$ $m_b = 10$. Из табл. 7 и 8 видно, что при $k \sim 1$ ср.вз. девиации наиболее высоки: $D_{abCr} = 200, D_{ABCr} = -71,$ а при $k = \infty$ имеем $D_{abCr} = D_{ABCr} = D_{abL} \sim D'_{abR} \sim$ $\sim D'_{abL} = 13 \pm 30$ (ср. с выводами п/п. 1.1). Последнее связано с тем, что из определения (1) при $k=\infty$ следует $N_{aCr\,i} = N_{a\,i}, N_{bCr\,i} = N_{b\,i}.$

Согласно табл. 7 $D_{abCr} = 99, d_{abCr} = 4.19$ в минимуме χ_a^2 фазы A ($k_{a\min} = 5.17$) и $D_{abCr} = 86, d_{abCr} = 3.61$ в минимуме χ_b^2 фазы В ($k_{b\min} = 6.67$), а d_{abCr} не обращается в нуль ни при каких k.

1.3. Результаты анализа при КСТС (см. табл. 8). При КСТС логика построения таб. 8 та же, что и табл. 7. Однако поскольку сечения резонансного поглощения в обеих фазах, А и В, при КСТС равны ($\sigma_A = \sigma_B = \sigma_0$), выходы в фазах А и В (см. (12)) тоже равны: $Y_{A\,i}(k) = Y_{B\,i}(k)$. Но так как $N_{a\,i} \neq N_{b\,i}$, χ^2 -критерии в фазах А и В не совпадают: $\chi^2_A(k) \neq \chi^2_B(k)$. Скорректированные числа отсчета также не равны: $N_{ACr\,i} = N_{a\,i}Y(\infty)/Y_{A\,i}(k) \neq N_{BCr\,i} =$ $= N_{b\,i}Y(\infty)/Y_{B\,i}(k)$. При КСТС ширины $k_{A\,\min} =$ $= 15.27, k_{B\,\min} = 25.69$ во много раз больше ширин $k_{a\min} = 5.17, k_{b\min} = 6.67$ при разрешенности СТС. В χ^2 -минимумах *d*-мера дефектов анализа на порядок ниже при КСТС, чем при разрешенной СТС: $d_{AB Cr} = 0.10$ при $k_{A \min} = 15.27$, $d_{AB Cr} = 0.31$ при $k_{B \min} = 25.69$, в то время как $d_{abCr} = 4.2$ при $k_{a \min} = 5.17$, $d_{abCr} = 3.6$ при $k_{b \min} = 6.67$ (см. табл. 7). При k = 12.78 мера дефектов $d_{AB Cr}$ равна нулю. Таким образом, мера дефектов анализа снижается на порядок при переходе от гипотезы разрешенности СТС, принятой в [1], к теории КСТС [3]. Вместе с результатами п/п. 1.1 это подтверждает существование КСТС, теоретически предсказанное в [3]. Напомним, что с точностью до систематической ошибки ~ 30 в п/п. 1.1 доказана независимость от фаз A, В чисел отсчета, усредненных по θ_i .

Из двух χ^2 -минимумов более достоверен минимум $k_{A\min} = 15.27$, поскольку: конкурирующая выборка фазы В дефектна (см. выводы в п/п. 1.1); отсчитываемая от $\chi^2(\infty)$ глубина минимума больше для $\chi^2_{\rm A}$, т.к. $\chi^2_{\rm A}(\infty) - \chi^2_{\rm A\,min} = 0.71 > \chi^2_{\rm B}(\infty) - \chi^2_{\rm B\,min} =$ = 0.09; мера дефектов d_{ABCr} равна нулю вблизи $k_{A\min}$. Значит, экспериментальная ширина линии должна составлять $k_{\rm exp} = k_{\rm A \, min} \sim 15.3$, что в ~ 2 раза больше, чем дал анализ [1], основанный на гипотезе о разрешенности СТС. Основной вклад в k_{exp} должно дать уширение монопольного сдвига, не подавляемое флуктуациями поля Ферми [9]. Это не согласуется с минимальной шириной $k_{c\,\text{line}} \sim 15.6$, полученной в [3] без учета виртуальных переходов. Их учет в ч.2 дает минимальное пороговое уширение контактным полем Ферми $3.47/p < k_{c \, line \, thr} <$ < 5.66/p, где p > 1. Это намного ниже, чем $k_{\rm exp} \sim$ ~ 15.3. Так и должно быть, поскольку ширина k_{ехр} связана в основном с уширением монопольного сдвига.

2. Учет виртуальных переходов. Первая оценка $k_{c \text{ line}}$, согласующаяся с опытом по порядку

Таблица 8

k	1	4	7	10	12.78	15.27	25.69	50	200	∞
$\chi^2_{ m A}$	59.9	9.34	2.72	1.20	0.84	0.78	1.01	1.34	1.48	1.49
$\chi^2_{ m B}$	55.1	9.69	3.32	1.61	1.06	0.85	0.68	0.73	0.77	0.77
$N'_{\rm A Cr}$	114065	113508	113301	113188	113120	113077	112972	112885	112806	112778
$N_{ m BCr}$	114136	113535	113313	113193	113120	113074	112964	112873	112793	112765
$D_{AB Cr}$	-71	-27	-12	-5	0	3	8	12	13	13
$d_{ m ABCr}$	-0.33	-0.31	-0.24	-0.13	0	0.10	0.31	0.40	0.43	0.43
$\varepsilon D_{ m ABCr}$	215	87.4	49.2	33.6	27.6	25.5	25.9	28.5	29.7	29.7
$\varepsilon_{N'A \operatorname{Cr}}$	152.3	60.0	32.3	21.5	18.0	17.3	19.7	22.6	23.8	23.8
$\varepsilon_{NB{ m Cr}}$	151.8	63.5	37.1	25.8	20.9	18.7	16.8	17.4	17.8	17.8
Комментарии					$d_{\rm ABCr} = 0$	$\chi^2_{\rm A} = \min$	$\chi^2_{\rm B} = \min$			

Анализ при КСТС [3], когда направление поля не влияет на резонансное поглощение

величины, была получена в [3] в простой модели усреднения СТВ на верхнем ("+") и нижнем ("-") уровнях ядра при времени усреднения $\tau_{av} \sim \tau$, где au – время жизни того уровня, который живет меньше (например, уровня "+" в переходе 109m Ag $^{-109}$ Ag). Виртуальные переходы с "+" на "-" и обратно сильно меняют $k_{c\,\text{line}}$. Виртуальные фотоны уходят от ядра не далее чем на длину волны $\lambda \sim 10^{-9}\,{\rm cm},$ так как при большем удалении начинается волновая зона реальных фотонов. Поэтому время жизни виртуального состояния $\langle - \rangle$ есть $\tau_- \sim \lambda/c = \hbar/E_{\gamma} \sim 10^{-20}$ с, где $E_{\gamma} \sim 88 \,\mathrm{ksB}$ для ¹⁰⁹Ag. Поскольку на виртуальные переходы не существует жестких ограничений (например, поперечность волны, сохранение импульса), виртуальный переход более вероятен, чем реальный переход с вылетом у-кванта или электрона конверсии. Поэтому время жизни τ_+ виртуального состояния (+) много меньше наблюдаемого времени жизни τ уровня "+" и, значит,

$$\tau_{-} \sim \lambda/c = \hbar/E_{\gamma} \le \tau_{+} \ll \tau. \tag{3}$$

Частота виртуальных переходов $\nu_v \sim 1/(\tau_+ + \tau_-)$ может быть выше частоты флуктуаций поля Ферми $\nu_{\rm F}$, т.е. $\nu_v \gg \nu_{\rm F}$. Так, если $\tau_+ \sim \tau_-$, то $\nu_v \sim 10^{20} \, \Gamma_{\rm I} \gg \nu_{\rm F} \sim 10^{16} \, \Gamma_{\rm I}$. Введем квантовое среднее момента ядра $\langle \hat{\mathbf{I}} \rangle$. Если единичный вектор $\mathbf{u} = \langle \hat{\mathbf{I}} \rangle / |\langle \hat{\mathbf{I}} \rangle|$ (см. текст под формулой (7) в [3]) в момент виртуального перехода не меняется, то вектор \mathbf{u} вращается вокруг поля \mathbf{H}_{Rf} с эффективной частотой Лармора (см. текст под формулой (8) в [3])

$$\Omega_{\rm ef} = (\mu/I)_{\rm ef} \mu_{\rm N} H_{Rf} / \hbar, \qquad (4)$$

где $(\mu/I)_{\rm ef} = (\tau_+\mu_+/I_+ + \tau_-\mu_-/I_-)/(\tau_+ + \tau_-),$ μ_+, μ_- и I_+, I_- – магнитный момент μ и спин ядра I для уровней "+", "–", $\mu_{\rm N}$ – ядерный магнетон. Так как для ¹⁰⁹Ад $\mu_+/I_+ \sim 8/7,$

Письма в ЖЭТФ том 98 вып. 11-12 2013

 $\mu_{-}/I_{-} \sim 0.26$, имеем $(\mu/I)_{\rm ef} = 0.7$, если $\tau_{+} = \tau_{-}$, и $(\mu/I)_{\rm ef} = 1.14$, если $\tau_{+} \gg \tau_{-}$. Пороговые условия (10) из [3], $\tau_{av}(\mu_{+}\mu_{\rm N}H_{c\varepsilon_{-}}/I_{+}\hbar)^{2}/4\nu_{\rm F} \geq 1$ для "+" и $\tau_{av}(\mu_{-}\mu_{\rm N}H_{c\varepsilon_{-}}/I_{-}\hbar)^{2}/4\nu_{\rm F} > 1$ для "–", заменяются единым для обоих уровней пороговым условием

$$\tau_{av}\Omega_{ef\varepsilon}^2/4\nu_{\rm F} \ge 1,\tag{5}$$

где $\Omega_{ef\varepsilon} = (\mu/I)_{\rm ef} \mu_{\rm N} H_{c\varepsilon}/\hbar$ – среднеквадратичная эффективная угловая скорость $\Omega_{\rm ef}$ за время τ_{av} . Скорость $\Omega_{ef\varepsilon}$ отличается от Ω_{ef} использованием ср.кв. поля $H_{Rf\varepsilon} \sim H_{c\varepsilon}$, где $H_{c\varepsilon}$ – ср.кв. флуктуация поля Ферми, $\tau_{av} \sim \tau p \sim 60p$ с, $\nu_{\rm F} \sim 5 \cdot 10^{16}$ Гц. Из (3) получаем порог поля Ферми:

$$H_{c\varepsilon} \ge (\hbar/\mu_{\rm N})(4\nu_{\rm F}/\tau_{av})^{1/2}/(\mu/I)_{\rm ef} = H_{c\varepsilon\,thr},\qquad(6)$$

где $\hbar/\mu_{\rm N} = 2.105 \cdot 10^{-4} \, {\rm c}$ ·Гс. Для ¹⁰⁹Ад в среднем по кристаллу $|\langle \hat{\mathbf{I}} \rangle_{\rm cr} / I|_+ = 6/7, \, |\langle \hat{\mathbf{I}} \rangle_{\rm cr} / I|_- = 1$ и

$$1.07 \cdot 10^4 p^{-1/2} \,\Gamma c \le H_{c\varepsilon \,thr} \le 1.74 \cdot 10^4 p^{-1/2} \,\Gamma c, \quad (7)$$

где число 1.07 относится к случаю $\tau_+ \gg \tau_-$, а число 1.74 – к случаю $\tau_+ = \tau_-$. В силу (6) эти числа необходимо заменить меньшими, если реально $\nu_{\rm F} < 5 \cdot 10^{16}$ Гц. Несохранение **u** в момент виртуального перехода ведет к более мягким, чем (5)–(7), пороговым условиям [9]. Из (19) в [3] получаем пороговые вклады $k_{cthr} = \tau \Gamma_{cthr}$ от поля Ферми в уширения уровней. Например, $k_{c+} > k_{cthr+} = \tau \omega_{1\varepsilon thr+} |\langle \hat{\mathbf{I}} \rangle_{\rm cr} / I|_+ / (3\tau_{av}\nu_{\rm F})^{1/2} =$ $\tau H_{c\varepsilon thr} |\mu_+|\mu_{\rm N}/\hbar| \langle \hat{\mathbf{I}} \rangle_{\rm cr} / I|_+ / (3\tau_{av}\nu_{\rm F})^{1/2}$, $\times (4\nu_{\rm F}/\tau_{av})^{1/2} / (\mu/I)_{\rm ef}] |\mu_+|\mu_{\rm N}/\hbar| \langle \hat{\mathbf{I}} \rangle_{\rm cr} / I|_+ / (3\tau_{av}\nu_{\rm F})^{1/2}$, т.е. имеем

$$k_{c\,thr^{+}} = (\tau/\tau_{av})(4/3)^{1/2}|\mu_{+}||\langle \mathbf{I}\rangle_{cr}/I|_{+}/(\mu/I)_{ef};$$

$$k_{c\,\min_{-}} = (\tau/\tau_{av})(4/3)^{1/2}|\mu_{-}||\langle \hat{\mathbf{I}}\rangle_{cr}/I|_{-}/(\mu/I)_{ef},$$
(8)

$$k_{cline} \ge k_{c thr line} = k_{c thr^{+}}^{2} + k_{c thr^{-}}^{2})^{1/2} =$$

= $(\tau/\tau_{av})(4/3)^{1/2}[(|\mu_{+}||\langle \hat{\mathbf{I}} \rangle_{cr}/I|_{+})^{2} +$
+ $(|\mu_{-}||\langle \hat{\mathbf{I}} \rangle_{cr}/I|_{-})^{2}]^{1/2}/((\mu/I)_{ef}.$ (9)

Видно, что $k_{c \, \text{line} \, thr}$ не зависит от $\nu_{\rm F}$, а при $\tau_{av} = \tau p$ (см. [3]) не зависит и от τ . Для ¹⁰⁹Ag $|\mu_+| \sim 4$, $|\langle \hat{\mathbf{I}} \rangle_{\rm cr} / I|_+ \sim 6/7, \ |\mu_-| \sim 0.13, \ |\langle \hat{\mathbf{I}} \rangle_{\rm cr} / I|_- = 1$. Тогда для ECC–КСТС на изотопе ¹⁰⁹Ag имеем

$$3.47/p \le k_{c \, \text{line} \, thr} \le 5.66/p,$$
 (10)

где 3.47 относится к случаю $\tau_+ \gg \tau_-$, а 5.66 – к случаю $\tau_{+} = \tau_{-}$. При переходе от ¹⁰⁹Аg к другим ядрамкандидатам на ECC-КСТС ограничение на $k_{c \, \text{line} \, thr}$ типа $A/p \leq k_{c \, line \, thr} \leq B/p$ не будет сильно отличаться от (10). И так как $k_{c \, line \, thr}$ не зависит от $\nu_{\rm F}$ и τ , в рассмотренной здесь модели виртуальных переходов следует ожидать расширения круга ядер для КСТС на любые времена жизни, в отличие от простой модели усреднения, использованной в [3]. При этом основная идея модуляции СТВ флуктуациями поля Ферми одна и та же как здесь, так и в [3]. Оценки (7) для $H_{c\varepsilon thr}$ и (10) для $k_{c \operatorname{line} thr}$ намного ниже оценок $H_{c\varepsilon thr} \sim 4.8 \cdot 10^4 p^{-1/2}$ Гс и $k_{c \, line \, thr} \sim 15.6/p$, сделанных в рамках простой модели усреднения СТВ в [3]. Не исключено также наличие ядер, для которых формула (10) даст $k_{c \, line \, thr} \sim 1/p$. Более мягкие оценки см. в [9].

3. Методы и формулы. Критерий $\chi^2(k)$ на степень свободы [10] и минимум $\chi^2(k)$ по k имеют вид

$$\chi^{2}(k) = \min_{C} \Sigma_{i} \{ [N_{i} - CY_{i}(k)] / \sigma_{i} \} 2 / F, \ \min_{k} \chi^{2}(k) =$$
$$= \min_{k} \min_{C} \Sigma_{i} \{ [N_{i} - CY_{i}(k)] / \sigma_{i} \}^{2} / F, \qquad (11)$$

где $Y_i(k) = Y(k, \theta_i, \psi) = Y_{k,i,\psi}$ и $CY_i(k)$ – выход квантов из пластины и теоретическое число отсчетов в точке θ_i , C – подгоночный параметр, F = m - l – число степеней свободы, т – число членов в сумме, l – число связей. Минимизация по C дает C = $= (\Sigma_i N_i Y_i / \sigma_i^2) / \Sigma_i (Y_i / \sigma_i)^2$. Это уравнение накладывает одну связь. Поэтому F = m - 1. Вместо ψ будем ставить индекс фазы A ($\psi = 0$) или B ($\psi = 83^{\circ} - \theta_i$). Выходы также зависят от ряда неварьируемых параметров (толщины пластины d = 0.074 см, ее высоты $d_1 = 1.6 \,\mathrm{cm}$ и ширины $d_2 = 2.4 \,\mathrm{cm}$, тех же размеров d_1, d_2 у входного окна детектора, отстоящего от пластины на расстояние $d_3 = 24.0$ см). Введем оси Декарта OZ (по нормали к пластине), OX (вдоль ее ширины) и ОУ (вдоль высоты). Начало О поместим в центре пластины. Пучок ү-лучей, задаваемых двугранными углами φ , δ (с вершинной осью OX) и φ_1, δ_1 (с вершинной осью OY), ограничен условиями $-\varphi_0 - \delta < \varphi < \varphi_0 - \delta, -\varphi_{10} - \delta_1 < \varphi_1 < \varphi_{10} - \delta_1,$ где $\varphi_0 = d_1/2d_3 = 0.033$ рад, $\varphi_{10} = d_2/2d_3 = 0.05$ рад. Вершинная ось двугранного угла есть аналог вершины обычного плоского угла. Углы $\delta, \, \delta_1$ дают отклонение реального положения нормали к пластине от предполагаемого. Обычно полагают, что ось наблюдения и нормаль совпадают. При $|\delta|, |\delta_1|, \varphi_0, \varphi_{10} \ll 1$ усреднение Y по z, φ, φ_1 имеет вид

$$Y(k,\theta_i,\psi) = Y_{k,i,\psi} =$$

$$= \int_{-\varphi_0-\delta}^{\varphi_0-\delta} (d\varphi/2\varphi_0) \int_{-\varphi_{10}-\delta_1}^{\varphi_{10}-\delta_1} (d\varphi_1/2\varphi_{10}) \int_0^d dz \,\rho_p T_e T_r,$$
(12)

где ρ_p – распределение родительского (parent) изотопа ¹⁰⁹Cd в пластине по ее глубине z, T_e – электронный фактор прозрачности для квантов 88.03 кэВ, T_r – гамма-резонансный фактор прозрачности, z – текущая координата вдоль нормали к пластине OZ. На стороне пластины, обращенной к детектору, z = d. На обратной ее стороне z = 0. Факторы ρ_p, T_e, T_r имеют вид

$$\begin{split} \rho_p &= \big\{ \exp[-b(d-z)^2] + \\ &+ \exp(-bz^2) \big\} \Big/ \int_0^d \{ \exp[-b(d-z')^2] + \exp(-b{z'}^2)] dz', \\ &\quad b = 636 \operatorname{cm}^{-2}, \\ &\quad T_e = \exp[-\mu_e(d-z)U], \\ &\quad U = [1 + \tan^2(\varphi + \delta) + \tan^2(\varphi_1 + \delta_1)]^{1/2}, \end{split}$$

$$\mu_e = 21.5 \,\mathrm{cm}^{-1}, \ T_r = 1 - f + f \exp(-UQ'), \ Q' = Q/f,$$

где f – фактор Мёссбауэра, 1 – f – доля нерезонансного излучения, $f \exp(-UQ')$ – доля резонансного излучения, вышедшего из пластины. В [1] T_r дается менее строгим выражением, e^{-UQ} . Однако числовое различие между T_r и e^{-UQ} мало́, так как $T_r \sim 1 - fUQ' = 1 - UQ \sim e^{-UQ}Q' = [D'/\sin(\theta + \theta)]$ $(+ \varphi + \delta)$]arctan{ $[G(d - z)\sin(\theta + \varphi + \delta)]/k$ }, G = $= 1/h_0 = 0.826897 \cdot 10^4 \,\mathrm{cm}^{-1}, h_0 = c^2 \hbar/(E_{\gamma}g\tau) - \mathrm{mepe}^{-1}$ пад высот, на котором сдвиг частоты γ -кванта из-за гравитации равен $1/\tau$, c – скорость света, \hbar – константа Планка, д – ускорение свободного падения, $D' = \xi(\sigma_w/2)[1/(1+\alpha_t)]fh_0\nu_{109}, \nu_{109}$ – плотность ядер ¹⁰⁹ Ад в серебряной пластине, ξ – магнитный фактор, $\xi=\xi_{\rm A}=17/64$ в фазе A и $\xi=\xi_{\rm B}=\xi_{\rm A}/2.06$ в фазе **B**, без магнитного поля $\xi = \xi_0 = 1, D' = D'_A =$ = 5.963923 $\cdot 10^{-5}/f'$ в фазе **A** и $D' = D'_{\rm A}/2.06$ в фазе **B**, без магнитного поля $D' = D'_0 = D'_A \cdot 64/17$,

Письма в ЖЭТФ том 98 вып. 11-12 2013

 $σ_w = [(2I_e + 1)/(2I_g + 1)]\lambda^2/2\pi$ – волновое сечение в максимуме резонанса, I_e и I_g – спины ядра ¹⁰⁹Ag в изомерном и основном состояниях, λ – длина волны, $α_t$ – полный коэффициент внутренней электронной конверсии. Все перечисленные величины даны в [1]. В настоящей работе считается, что для детектора # 1 $\delta = \delta_1 = 0$. Расчеты с ненулевыми δ , δ_1 позволили бы использовать опыты при сбитой шкале углов θ , такой, например, как для детектора # 2 в [1,8]. При δ , δ_1 , φ_0 , $\varphi_{10} = 0$ формула (12) примет вид

$$Y(k,\theta_{i},\psi) = \int_{0}^{d} \rho(z) \exp[-\mu_{e}(d-z)](1-f+fe^{-P/f})dz,$$
$$P = (D/\sin\theta) \arctan[(C/k)(d-z)\sin\theta]$$
(13)

$$P = (D/\sin\theta) \arctan[(G/\kappa)(a-z)\sin\theta],$$
 (13)
при $P/f \ll 1$ практически совпадающий с формулой

 $Y(k, \theta_i, \psi) = \int_0^d \rho(z) \exp[-\mu_e(d-z)]e^{-P}dz$, принятой в [1], где $G = 0.826897 \,\mathrm{cm}^{-1}$, $D = 5.963923 \cdot 10^{-5}$ для фазы A, а для фазы B параметр D взят в 2.06 раза меньше. Однако из формул (2), (3) статьи [1] этого не видно, так как фактор, зависящий от ψ , в них отсутствует, что, скорее всего, является опечаткой. Обозначив этот фактор буквой ξ , имеем $\xi_A/\xi_B = 2.06$ (ср. с текстом под формулой (12)). Распределение плотности $\rho(z)$ для ядер ¹⁰⁹Сd вдоль оси Z, нормальной к пластине, определено в [1] из эксперимента.

4. Перспективы уточнения, ускорения и расширения исследований по ЕСС-КСТС. Итак, теория ЕСС-КСТС (см. [3] и ч.2 настоящей статьи) находится в согласии с первичными экспериментальными данными работы [1], но не с ее рабочей гипотезой о разрешенности СТС и, как следствие, о зависимости резонансного поглощения от угла ψ между волновым вектором и внешним магнитным полем **H**_{ex}. Поэтому можно пренебречь магнитным полем Земли, что в несколько раз ускорит накопление данных. Вместе с тем использование полей выше 10⁴ Гс, портящих ЕСС-КСТС, позволит оценить флуктуации поля Ферми. Итоги п/п. 1.1 помогут выявить и устранить систематические ошибки, в том числе дадут возможность использовать второй детектор с другой стороны пластины. Результаты ч. 2 расширяют область ядер и сред с ЕСС-КСТС, очерченную в [3]. Метод скорректированных чисел $N_{\rm Cr}$ и ч.3 полезны в анализе ЕСС-КСТС. Эффекты КСТС-ЕСС можно наблюдать не только по сужению линии. Например, они ведут к 100-процентной деполяризации ядер и излучения. Исследования ЕСС–КСТС возможны не только в γ -резонансе, но и в других областях спектроскопии.

Автор глубоко признателен за помощь, оказанную в разное время: массивы числовых данных работы [1] были любезно предоставлены ее руководителем проф. А.В. Давыдовым (ИТЭФ, Москва); обработка этих массивов и получение результатов ч. 1 настоящей статьи были бы невозможны без консультаций по Фортрану у проф. В.Л. Бугаенко (ИТЭФ, Москва); недостающее звено в объяснении ЕСС было обнаружено в монографии [11]²⁾, рекомендованной автору 30 лет назад в качестве настольной книги Ю.А. Изюмовым (академик РАН, Институт физики металлов, Екатеринбург). Автор благодарит коллектив Отдела строения вещества им. Гольданского за многолетнюю поддержку.

- Ю. Д. Баюков, А. В. Давыдов, Ю. Н. Исаев, Г. Р. Карташов, М. М. Коротков, В. В. Мигачев, Письма в ЖЭТФ 90(7), 547 (2009).
- А.В. Давыдов, Ю.Н. Исаев, В.М. Самойлов, Изв. РАН, сер. физ. 61, 2221 (1997).
- 3. С.В. Карягин, Письма в ЖЭТФ **98**(3), 197 (2013).
- W. Wildner and U. Gonser, J. de Phys. Coll. Suppl. 40, 2 (1979).
- S. Rezaie-Serej, G.R. Hoy, and R.D. Taylor, Laser Physics 5, 240 (1995).
- V.G. Alpatov, Yu.D. Bayukov, V.M. Gelis, A.V. Davydov, Yu.N. Isaev, G.R. Kartashov, M.M. Korotkov, V.V. Milyutin, and V.M. Samoilov, Laser Physics 10, 952 (2000).
- V. G. Alpatov, Yu. D. Bayukov, A. V. Davydov, Yu. N. Isaev, G. R. Kartashov, M. M. Korotkov, and D. V. L'vov, Laser Physics 15, 1680 (2005).
- V. G. Alpatov, Yu. D. Bayukov, A. V. Davydov, Yu. N. Isaev, G. R. Kartashov, M. M. Korotkov, and V. V. Migachev, Laser Physics 17, 1067 (2007).
- 9. С.В. Карягин, Статья направляется в ЖЭТФ.
- Дж. Тейлор, Введение в теорию ошибок, М., Мир (1985).
- Н. Ашкрофт, Н. Мермин, Физика твердого тела, пер. А.С. Михайлова, под ред. М.И. Каганова, М., Мир (1979).
- N.W. Ashkroft and N.D. Mermin, Solid State Physics, HRW, Philadelphia (1976).

²⁾Важную роль в рождении объяснения ЕСС [3] сыграли примечания в русском переводе [11] монографии [12].