Экспериментальная проверка теории эффекта

"Естественное сильное сужение" линий Мёссбауэра и более общего эффекта "Коллапс СТС" из-за флуктуаций контактного поля Ферми. Роль виртуальных переходов в этих эффектах

 $C. B. Карягин^{1)}$

Отдел строения вещества им. Гольданского, Институт химической физики им. Семенова РАН, 119991 Москва, Россия

Поступила в редакцию 14 октября 2013 г.

Для проверки теории эффекта "Естественное сильное сужение" (ЕСС) линий Мёссбауэра на долгоживущих изомерах и более общего эффекта "Коллапс сверхтонкой структуры" (КСТС) из-за флуктуаций контактного поля Ферми (С.В. Карягин, Письма в ЖЭТФ 98(3), 197 (2013)) по данным группы Давыдова (Ю.Д. Баюков, А.В. Давыдов, Ю.Н. Исаев и др., Письма в ЖЭТФ 90(7), 547 (2009)) выполнен анализ выхода γ -квантов 88.034 кэВ из серебряной пластины с изомером 109m Ад в двух вариантах: 1) СТС разрешена, выход зависит от угла ψ между волновым вектором кванта и внешним полем \mathbf{H}_{ex} ; 2) выход не зависит от ψ из-за КСТС. Показано, что вариант 2 ближе к истине, т.к. экспериментальные средние числа отсчетов при $\psi=0$ и $\sim \pi/2$ отличаются лишь на систематическую ошибку, одну и ту же при 4.2 и $295\,\mathrm{K}$, и, кроме того, при исключении резонанса числа отсчета не должны зависеть от ψ , что в варианте 1 сильно нарушено, а в 2 хорошо выполняется. Получено пороговое условие КСТС для поля Ферми с учетом виртуальных переходов. Коллапс СТС осуществим при любых временах жизни уровней ядра на любых переходах не только в гамма, но и в других диапазонах излучения. Он ведет к 100-процентной деполяризации ядер и излучения. Для оценки поля Ферми из опытов необходимо иметь $|\mathbf{H}_{ex}| \sim 10^4\,\Gamma \mathrm{c}$.

DOI: 10.7868/S0370274X13230112

Чтобы убедиться в существовании эффекта естественного сильного сужения (ECC) линий Мёссбауэра на долгоживущих изомерах, потребовалось 30 лет совершенствования опытов и развития идей (см. [1–8] и ссылки там), включая создание Гравитационного Спектрометра [1, 8], значительно повысившего надежность опытов, и объяснение ECC [3] модуляцией сверхтонких взаимодействий (СТВ) флуктуациями контактного поля Ферми. Пока только теория [3] дала тот же порядок ширины линии $\Gamma_{\rm line}$, что и опыты [1, 4–8]. В [3] было показано, что, по существу, ЕСС – это коллапс сверхтонкой структуры (СТС). Коллапс СТС (КСТС) из-за флуктуаций поля Ферми возможен на большем круге ядер и сред, чем ЕСС.

Анализ опытов [1] выполнен в ней в предположении, что СТС разрешена, когда резонансное сечение поглощения γ -кванта $\sigma_{\rm res}$ зависит от угла ψ между волновым вектором γ -кванта и магнитным полем [2]. Но так как СТС коллапсирует [3], $\sigma_{\rm res}$ не должно зависеть от ψ . Чтобы выбрать разрешение СТС или КСТС, в ч. 1 статьи выполнен сравнительный анализ

этих вариантов. Затем ищется полная ширина линии $\Gamma_{\rm line}$. Относительная ширина $k_{\rm line} = \tau \Gamma_{\rm line}$ сравнивается со вкладом $k_{c\,\mathrm{line}}$ от поля Ферми по простой модели усреднения СТВ [3] и по более совершенной модели (ч. 2). В обеих моделях усреднение СТВ в верхнем и нижнем состояниях ядра велось на отрезке времени усреднения $au_{\mathrm{av}} = au p$, где au – время жизни того уровня γ -перехода, который живет короче, $p \ge 1$ [9]. Вместе с тем в новой модели ядро много раз виртуально меняет состояние еще до наступления реального перехода. При этом базовая модель модуляции СТВ полем Ферми остается той же, что и в [3]. Коллапс СТС в обновленной таким образом теории осуществим при любом au на любых переходах не только в гамма, но и в других диапазонах излучения. В ч. 3 дан ряд формул и понятий, используемых в ч. 1.

1. Сравнительный анализ эксперимента [1] в вариантах разрешения СТС и коллапса КСТС. Опыты [1] были выбраны для проверки теории ЕСС–КСТС [3] по двум причинам. Во-первых, постоянство температуры в опытах [1,8] избавляет от вариаций геометрии опыта при больших измене-

¹⁾e-mail: akaryagina@gmail.com

Таблица 1

Опыты [1] при 4.2 K в фазе A (с током в кольцах Гельмгольца, $\psi = 0^{\circ \ *}$))
---	---

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
θ_i , K	+7	+3	+1	+0.67	+0.33	0	-0.33	-0.67	-1	-3	-7
N_{aLi}	112834	112788	112813	112646	112735	112737	112690	112808	112742	112906	112919
n_{aLi}	24	26	27	26	26	51	26	25	24	24	19
σ_{aLi}	69	66	65	66	66	47	66	68	69	69	78

 $^{^{*)}}$ n_{aLi} — число измерений в фазе А при угле θ_i ; N_{aLi} — среднее число отсчетов на измерение в фазе А при угле θ_i ; $\sigma_{Li} = (N_{aLi}/n_{aLi})^{1/2}$ — теоретическая среднеквадратичная ошибка для N_{aLi} .

Таблица 2

Опыты [1] при $T=4.2\,\mathrm{K}$ в фазе В (без тока в кольцах Гельмгольца, $\psi_i=83^\circ- heta_i^{\ *)})$

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
N_{bLi}	112576	112732	112829	112834	112771	112711	112670	112770	112759	112826	112817
n_{bLi}	24	26	26	26	26	51	26	26	24	24	19
σ_{bLi}	69	66	66	66	66	47	66	66	69	69	76

^{*)} n_{bLi} – число измерений в фазе В при угле θ_i ; N_{bLi} – среднее число отсчетов на одно измерение в фазе В при угле θ_i ; $\sigma_{bLi} = (N_{bLi}/n_{bLi})^{1/2}$ – теоретическая ср.кв. ошибка для N_{bLi} .

ниях температуры ΔT , характерных для ранних работ [4–7]. При $\Delta T \sim 100\,\mathrm{K}$ малозаметные изгибы и кручения в системе источник—криостат—детектор, меняя геометрию опыта, могут имитировать ЕСС. Во-вторых, измерения в [1] более стабильны и надежны, нежели в [8].

1.1. Независимость усредненных данных опытов [1] от направления магнитного поля. Данные таблиц 1, 2, 3, 4, предоставленные проф. Давыдовым в 2010 г., соответствуют графикам в [1]. Число γ квантов, регистрируемых на интервале измерения $750\,\mathrm{c}$, называется числом отсчетов N в измерении. На рис. 2 статьи [1] единице ординаты соответствует 24674.2 отсчета за $750\,\mathrm{c}$. Все числа отсчета N первичных измерений поделены на временные факторы распада ¹⁰⁹Cd, приводящие их к единому моменту измерения. Приведенные числа N не требуют учета распада материнского изотопа ¹⁰⁹Cd. Числа отсчетов N в таблицах являются арифметическими средними по n первичным измерениям, приведенным к одному началу. Вместе с тем единые моменты для измерений при 4.2 и 295 K отличаются на ~ 109 дн $\sim 9.4 \cdot 10^6$ с. Числа отсчетов N снабжены индексами условий измерения: а – фаза А, т.е. магнитное поле вдоль оси наблюдения (ось центр пластины-центр входного окна детектора); b – фаза B, т.е. поле почти нормально к оси наблюдения ($\psi_i = 83^{\circ} - \theta_i$); L – температура пластины $4.2 \,\mathrm{K}; \, R$ – температура пластины $295 \,\mathrm{K};$ i – номер угла наклона θ_i оси наблюдения к горизонтальной плоскости; соответствие i и θ_i указано в сносках к табл. 1 и 3. Так, $N_{aL-5}=112834$ получено усреднением по $n_{aL-5}=24$ приведенным числам первичных измерений при $\psi=0^\circ$, $T=T_L=4.2\,\mathrm{K}$, $\theta=\theta_{-5}=+7^\circ$. Результаты сравнения фаз A и B помещены в табл. 5 и 6.

Определим средневзвешенные (ср.вз.) числа $N_{aL}=\Sigma_i N_{aLi} w_{ai}$ и $N_{bL}=\Sigma_i N_{bLi} w_{bi}$ с весами $w_{ai}=\sigma_{aLi}^{-2}/\Sigma_i \sigma_{aLi}^{-2}\cong n_{aLi}/\Sigma_i n_{aLi}$ и $w_{bi}=\sigma_{bLi}^{-2}/\Sigma_i \sigma_{bLi}^{-2}\cong n_{bLi}/\Sigma_i n_{bLi}$ при $i=-4,-3,\ldots,+4,+5,$ т.е. с числом учтенных в усреднении точек m=10. Тогда $N_{aLw}=112778,$ $N_{bLw}=112765.$ В точке bL-5 имеем явный выброс числа отсчетов, т.к. $N_{bL-5}-N_{bLw}=189\cong 2.7\sigma_{bL-5}.$ Поэтому при усреднениях в обеих фазах, A и B, точка i=-5 отбрасывается.

Сравнение чисел отсчета в фазах A и В при $4.2\,\mathrm{K}$ дано в табл. 5, содержащей девиации $D_{abLi}=N_{aLi}-N_{bLi}.$ Их среднеквадратические (ср.кв.) опибки $\sigma_{abLi}=(\sigma_{aLi}^2+\sigma_{bLi}^2)^{1/2}.$ Их разбросы $\delta_{abLi}=D_{abLi}-D_{abL}.$ Средневзвешенная девиация $D_{abL}=N_{aL}-N_{bL}=13$ со ср.кв. ошибкой $\varepsilon D_{abL}=[\Sigma_i\sigma_{abLi}^2/m(m-1)]^{1/2}\sim 32,$ т.е. $D_{abL}\ll\varepsilon D_{abL}.$ При этом $|\delta_{abLi}|<\sigma_{abLi}$ всюду, кроме точек i=-5 и -2. Отметим, что усреднение по 11 точкам (отмечено штрихом) $i=-5,-4,\ldots,+4,+5$ дает втрое большую величину ср.вз. девиации, $D'_{abL'}=N'_{aL}-N'_{bL}=33.4\sim 3D_{abL}.$

Тот факт, что D_{abL} и D'_{abL} отличаются от нуля, не может объясняться различием резонансного поглощения в фазах A и B. Действительно, согласно [1, 2]

Таблица 3

Опыты [1] при $T=T_R=295\,\mathrm{K}\ (R\equiv\mathrm{Room})$ с током в кольцах Гельмгольца (фаза A, $\psi=0^{\circ\;*)}$)

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
θ_i , K	+7	+3	+1	+0.67	+0.33	0	-0.33	-0.67	-1	-3	-7
N_{aRi}	95770	95815	95797	95856	95930	95932	95909	95922	95949	95933	95763
n_{aRi}	22	22	23	23	22	22	22	22	20	20	20
σ_{aRi}	67	67	65	65	67	67	67	67	70	70	70

 $^{^{*)}}$ N_{aRi} – среднее число отсчетов на одно измерение A; n_{aRi} – число измерений типа A при $heta= heta_i$.

Таблица 4

Опыты [1] при 295 K без тока в кольцах Гельмгольца $(\psi_i = 83^\circ - \theta_i)$

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
N_{bRi}	95772	95695	95752	95938	95891	95954	95829	95829	95835	96029	95721
n_{bRi}	21	23	21	21	21	21	21	21	20	20	20
σ_{bRi}	67	65	68	68	67	67	67	68	70	70	70

резонансное поглощение в фазе А в 2.06 раза больше, чем в фазе В. Значит, должно выполняться неравенство $D_{abL}, D'_{abL} < 0$. В то же время опыты [1] дают прямо противоположный результат: $D_{abL}, D'_{abL} > 0.$ С другой стороны, согласно теории ЕСС [3] должно выполняться равенство $D_{abL}, D'_{abL} = 0$, что явно не так. Такое противоречие результатов $D_{abL}=13,$ $D'_{abL'} = 33.4$ обеим теориям можно объяснить либо различием выборок А и В, либо(и) систематической ошибкой. Например, в фазе В ток выключен, электрическая цепь разомкнута и поэтому слабее заземлена. Значит, наводки на аппаратуре (в том числе на детекторе) усиливаются при переходе от фазы А к фазе В, что может привести к небольшому (на $13/112748 \sim 10^{-4} = 0.01\%$) уменьшению числа отсчетов в фазе В. Наводки могут быть разной природы, включая радиоволны и статическое электричество, создаваемое, например, трением потоков (в том числе конвективных) воздуха и других сред об элементы установки. Ожидание систематической ошибки в фазе В (дефектность выборки в фазе В) подкрепляется наличием в ней трехкратного выброса для N при i = -5, когда $D_{abL-5} = 258$. Усредненная по всем m=11 точкам ср.вз. девиация $D'_{abL}\sim 33.4$ при $4.2\,\mathrm{K}$ ближе к ср.вз. девиации $D'_{abL} = 30.0$ при $295\,\mathrm{K},$ чем ср.вз. девиация $D_{abL} \sim 13$ при $4.2\,\mathrm{K}$, вычисленная по m=10 точкам.

Рассмотрим теперь табл. 3 и 4 для контрольных опытов при 295 K. От конца опытов при 4.2 K до начала опытов при 295 K прошло ~ 109 дн. $\sim 9.4 \cdot 10^6$ с, что составило заметную долю от времени распада материнского изотопа $\tau_{109\mathrm{Cd}} = 5.8 \cdot 10^7$ с. Это объясняет сильное уменьшение чисел отсчета в табл. 3 и 4 в сравнении с табл. 1 и 2.

По аналогии с табл. 5 строим табл. 6, введя девиации $D_{abRi}=N_{aRi}-N_{bRi}$. Их ср.кв. ошибки $\sigma_{abRi}=(\sigma_{aRi}^2+\sigma_{bRi}^2)^{1/2}$, веса $w_{aRi}=n_{aRi}/\Sigma_i n_{aRi}$, $w_{bRi}=n_{bRi}/\Sigma_i n_{bRi}$, ср.вз. числа отсчетов $N'_{aR}=\Sigma_i N_{aRi} w_{aRi}=95870$, $N'_{bR}=\Sigma_i N_{bRi} w_{bRi}=95840$, ср.вз. девиация $D'_{abR}=N'_{aR}-N'_{bR}=30$, разбросы девиации $\delta_{abRi}=D_{abRi}-D'_{abR}$, ср.кв. ошибка в ср.вз. девиации $\varepsilon D'_{abR}=[\Sigma_i \sigma_{abRi}^2/m(m-1)]^{1/2}=32$, т.е. $D'_{abR}\sim\varepsilon D'_{abR}$. Явных выбросов в табл. 3 и 4 нет. Поэтому все усреднения при 295 К ведутся по m=11 точкам $i=-5,-4,\ldots,+4,+5$, что отмечается штрихом: D'_{abR},N'_{aR},N'_{bR} , и т.д.

Тот факт, что D'_{abR} заметно больше нуля, не может объясняться зависимостью резонансного сечения от направления магнитного поля, так как при 295 К факторы Мёссбауэра $f,\ f'$ равны нулю и резонанса нет. Однако $D'_{abR}=30$ можно объяснить систематической ошибкой так же, как это было сделано выше при $4.2\,\mathrm{K}$. Хотя $D_{abL}=13\,$ при $4.2\,\mathrm{K}$ и $D'_{abR}=30\,$ при $295\,\mathrm{K}$ лишь примерно одинаковы, имеем (см. текст под табл. 5) $D'_{abL}=33.2\cong D'_{abR}$. Это указывает на общую природу сдвигов при $4.2\,\mathrm{m}$ 295 К как одной и той же систематической ошибки $D_{\mathrm{sys}}=13\pm30.$

Итак, усредненные по углам θ_i числа отсчета с точностью до систематической ошибки ~ 30 не зависят от выбора фазы A или B, что является одним из признаков КСТС. Дефектной (содержащей систематическую ошибку) является, скорее всего, выборка в фазе B

Рассмотрим теперь более сильные аргументы в пользу КСТС. Для этого сравним результаты анализа данных табл. 1 и 2 при разрешенности СТС, принятой в [1] (см. ниже п. 1.2 и табл. 7), с резуль-

Таблица 5

Сравнение	фаз	Α	и	\mathbf{B}	при	4.2	\mathbf{K}
-----------	-----	---	---	--------------	-----	-----	--------------

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
D_{abLi}	258	56	-16	-188	-36	26	20	38	13	81	102
σ_{abLi}	98	93	93	93	93	68	93	95	98	98	102
δ_{abLi}	229	27	-45	-217	-65	-3	-9	9	-16	52	73

Таблица 6

Сравнение чисел отсчета в фазах А и В при 295 К

i	-5	-4	-3	-2	-1	0	1	2	3	4	5
D_{abRi}	-2	120	45	-82	39	-22	80	93	114	-96	4
σ_{abRi}	94	93	94	94	94	94	94	95	99	99	99
δ_{abRi}	-32	90	15	-122	9	-52	50	63	84	-126	-26

татами анализа при КСТС [3] (см. п. 1.3 и табл. 8). Результаты анализа развернуты в табл. 7 и 8 по относительной ширине $k=\Gamma\tau$, где Γ – полная ширина линии, τ – время жизни изомера 109m Ад. Основные данные табл. 7 и 8 включают критерии χ^2 на степень свободы [10] и (главная новинка настоящей работы) числа отсчета, скорректированные к условиям без γ -резонанса (если, например, f, f'=0 или $k=\infty$). В настоящей работе в отличие от [1] выход квантов усреднен по углам их вылета, ограниченным пластиной и входным окном детектора (ч. 3). Исправлены также (ч. 3) неточности и опечатки в формулах для выходов квантов, замеченные в статье [1].

- 1.2. Результаты анализа при разрешенной СТС (см. табл. 7).
- 1. Критерии χ^2 на степень свободы. Согласно [1, 2] для перехода 109m Аg $^{-109}$ Аg сечения γ -резонансного поглощения составляют $\sigma_a = \sigma_0 \cdot 17/64$ в фазе A, $\sigma_b = \sigma_a/2.06$ в фазе B и σ_0 при КСТС. Определение χ_a^2 и χ_b^2 будет дано в ч. 3 статьи. Индексы "а" и "b" соответствуют фазам A и B. В минимумах χ^2 имеем $k_{a\min} = 5.17$, $\chi_{a\min}^2 = 0.71$ и $k_{b\min} = 6.67$, $\chi_{b\min}^2 = 0.68$ в отличие от [1], где $k_{a\min} \sim k_{b\min} \sim 7$, $\chi_{a\min}^2 = 0.62$, $\chi_{b\min}^2 = 0.64$. Таким образом, различие χ^2 -результатов между табл. 7 и [1] невелико. Уменьшение ширины k_{\min} , ожидаемое в [1] при усреднении выхода квантов по углам их вылета, заметно лишь в фазе A.
- 2. Числа отсчетов, скорректированные к отсутствию резонанса. Если бы резонансное поглощение исчезло, то числа $N_{a\,i},\,N_{b\,i}$ заменились бы числами

$$N_{a \operatorname{Cr} i} = N_{a i} Y(\infty) / Y_{a i}(k), \ N_{b \operatorname{Cr} i} = N_{b i} Y(\infty) / Y_{b i}(k),$$

которые мы назовем скорректированными (Cr = =corrected). Здесь $Y(\infty) = Y_{el}$ – выход квантов в отсутствие резонанса, когда резонансная прозрачность $T_r = 1$ (см. (12)), т.е. при $k = \infty$ или (и) при f=0. Выход $Y(\infty)$ не зависит от θ_i и ψ , т.е. от i и фаз A, B. Согласно (12) $Y(\infty)$ есть электронная прозрачность T_e , усредненная по углам φ , φ_1 отклонения волнового вектора от линии наблюдения. С точностью до машинного нуля $Y(\infty) = Y_{el} = 0.503\,534\,701\,081\,222$, при условии задания всех исходных параметров с такой точностью. Введем критерий совершенства, не зависящий от критерия минимума χ^2 и состоящий в том, что при верном выборе модели ЕСС, точном расчете выходов $Y_{ai}(k)$, $Y_{bi}(k)$, Y_{el} , отсутствии случайных и систематических ошибок и ширине k, соответствующей реальности, числа $N_{a \, {\rm Cr} \, i}$ и $N_{b \, {\rm Cr} \, i}$ не должны зависеть ни от угла θ_i , ни от выбора фаз A, B. Иными словами, в идеальных условиях должно выполняться $N_{a \, \text{Cr}\, i} - N_{a \, \text{Cr}\, i'} = N_{b \, \text{Cr}\, i} - N_{b \, \text{Cr}\, i'} = N_{a \, \text{Cr}\, i} - N_{b \, \text{Cr}\, i'} = 0$ при любых i, i'. Для подавления случайных ошибок введем ср.вз. числа $N'_{a\,Cr}$, $N_{b\,Cr}$:

$$N'_{a \,\text{Cr}} = \Sigma_i w_{a \,i} N_{a \,\text{Cr} \,i} \ (i = -5, -4, \dots, 4, 5),$$

$$N_{b \,\text{Cr}} = \Sigma_{i'} w_{b \,i'} N_{b \,\text{Cr} \,i'} \ (i' = -4, -3, \dots, 4, 5),$$
(2)

где веса $w_{a\,i}=\sigma_{aLi}^{-2}/(\Sigma_i\sigma_{aLi}^{-2}),~w_{b\,i'}=\sigma_{bLi'}^{-2}/(\Sigma_{i'}\sigma_{bLi'}^{-2})$ нормированы на 1: $\Sigma_iw_{a\,i}=\Sigma_{i'}w_{b\,i'}=1$. Тогда при достаточно больших выборках A, В числа $N'_{a{\rm Cr}}$ и $N_{b{\rm Cr}}$ должны совпасть с хорошей точностью при удачной модели ECC, верности $Y_{a\,i}(k),~Y_{b\,i}(k),~Y_{el},$ отсутствии систематических ошибок и верном значении k. Поэтому отличие ср.вз. девиации $D_{ab{\rm Cr}}=N'_{a{\rm Cr}}-N_{b{\rm Cr}}$ от нуля может быть связано с система-

Таблица	7
---------	---

Анализ в	случае р	азрешен	ной СТС	, когда в	выход γ -г	квантов	зависит (от напраі	вления м	агнитноі	го поля
,		_					4.0		0.5	~ 0	

k	1	2	3	4	5.17	6.67	10	15	25	50	∞
χ_a^2	4.70	1.80	1.01	0.77	0.71	0.75	0.93	1.13	1.32	1.44	1.49
χ_b^2	1.82	1.03	0.80	0.72	0.69	0.68	0.69	0.72	0.75	0.76	0.77
$N'_{a\mathrm{Cr}}$	113181	113079	113023	112986	112956	112929	112891	112860	112831	112806	112778
$N_{b\mathrm{Cr}}$	112981	112924	112893	112873	112857	112843	112823	112807	112792	112779	112765
$D_{ab\mathrm{Cr}}$	200	155	130	113	99	86	68	53	39	27	13
$d_{ab\mathrm{Cr}}$	4.0	4.6	4.8	4.6	4.2	3.6	2.7	2.0	1.4	0.9	0.4
$\varepsilon D_{ab{ m Cr}}$	50.6	33.4	26.8	24.4	23.6	23.9	25.3	27.0	28.5	29.4	29.7
$\varepsilon_{N'a{ m Cr}}$	42.5	26.7	19.7	17.2	16.5	17.0	18.8	20.7	22.4	23.5	23.8
$\varepsilon_{Nb{ m Cr}}$	27.4	20.6	18.2	17.3	16.9	16.8	16.9	17.2	17.5	17.7	17.8
Комментарии					$\chi^2_{a \mathrm{min}}$	$\chi^2_{b\mathrm{min}}$					$D_{ab\mathrm{Cr}} = 0$

 $^{^{*)}}$ Данные в χ^2 -минимумах выделены жирным шрифтом.

тической ошибкой, малостью выборок А, В, неверным расчетом выходов $Y_{ai}(k)$, $Y_{bi}(k)$, Y_{el} , неудачностью модели ЕСС и с несоответствием пробной ширины k реальности. Относительная ср.вз. девиация $d_{ab{
m Cr}}=D_{ab{
m Cr}}/arepsilon D_{ab{
m Cr}}$ – качественная мера дефектов анализа. Здесь $\varepsilon D_{ab{\rm Cr}} = (\varepsilon_{N'a{\rm Cr}}^2 + \varepsilon_{Nb{\rm Cr}}^2)^{1/2}$ – ср.кв. ошибка в $D_{ab{
m Cr}},\, arepsilon_{Na{
m Cr}}=\sigma_{N'a{
m Cr}}/m_a^{1/2}$ – ср.кв. неточность в определении числа $N_{a{
m Cr}}^{\prime},~\sigma_{N'a{
m Cr}}=$ $= [\Sigma_i w_{ai} (N_{a\text{Cr }i} - N_{a\text{Cr}})^2]^{1/2} [m_a/(m_a - 1)]^{1/2} - \text{cp.kb.}$ разброс отклонений $N_{a{\rm Cr}\,i}$ от $N_{a{\rm Cr}}'$, $m_a=11$ – число членов в сумме. В фазе В $\varepsilon_{Nb{
m Cr}}=\sigma_{Nb{
m Cr}}/m_b^{1/2}$ $\sigma_{NbCr} = [\Sigma_i w_{bi'} (N_{bCr\,i'} - N_{bCr})^2]^{1/2} [m_b/(m_b - 1)]^{1/2},$ $m_b = 10$. Из табл. 7 и 8 видно, что при $k \sim 1$ ср.вз. девиации наиболее высоки: $D_{abCr} = 200$, $D_{ABCr} = -71$, а при $k=\infty$ имеем $D_{ab{\rm Cr}}=D_{{\rm AB\,Cr}}=D_{abL}\sim D'_{abR}\sim$ $\sim D'_{abL} = 13 \pm 30$ (ср. с выводами п/п. 1.1). Последнее связано с тем, что из определения (1) при $k=\infty$ следует $N_{aCri} = N_{ai}, N_{bCri} = N_{bi}.$

Согласно табл. 7 $D_{ab{
m Cr}}=99,\ d_{ab{
m Cr}}=4.19$ в минимуме χ^2_a фазы А $(k_{a\,{
m min}}=5.17)$ и $D_{ab{
m Cr}}=86,\ d_{ab{
m Cr}}=3.61$ в минимуме χ^2_b фазы В $(k_{b\,{
m min}}=6.67),$ а $d_{ab{
m Cr}}$ не обращается в нуль ни при каких k.

1.3. Результаты анализа при КСТС (см. табл. 8). При КСТС логика построения таб. 8 та же, что и табл. 7. Однако поскольку сечения резонансного поглощения в обеих фазах, А и В, при КСТС равны ($\sigma_{\rm A}=\sigma_{\rm B}=\sigma_{\rm 0}$), выходы в фазах А и В (см. (12)) тоже равны: $Y_{\rm A}\,_i(k)=Y_{\rm B}\,_i(k)$. Но так как $N_{a\,i}\neq N_{b\,i}$, χ^2 -критерии в фазах А и В не совпадают: $\chi^2_{\rm A}(k)\neq \chi^2_{\rm B}(k)$. Скорректированные числа отсчета также не равны: $N_{\rm ACr}\,_i=N_{a\,i}Y(\infty)/Y_{\rm A}\,_i(k)\neq N_{\rm BCr}\,_i=N_{b\,i}Y(\infty)/Y_{\rm B}\,_i(k)$. При КСТС ширины $k_{\rm A\,min}=15.27,\ k_{\rm B\,min}=25.69$ во много раз больше ширин $k_{a\,min}=5.17,\ k_{b\,min}=6.67$ при разрешенности СТС. В χ^2 -минимумах d-мера дефектов анализа

на порядок ниже при КСТС, чем при разрешенной СТС: $d_{\rm AB\,Cr}=0.10$ при $k_{A\,\rm min}=15.27,\,d_{\rm AB\,Cr}=0.31$ при $k_{B\,\rm min}=25.69,\,$ в то время как $d_{ab\rm Cr}=4.2$ при $k_{a\,\rm min}=5.17,\,d_{ab\rm Cr}=3.6$ при $k_{b\,\rm min}=6.67$ (см. табл. 7). При k=12.78 мера дефектов $d_{\rm AB\,Cr}$ равна нулю. Таким образом, мера дефектов анализа снижается на порядок при переходе от гипотезы разрешенности СТС, принятой в [1], к теории КСТС [3]. Вместе с результатами п/п. 1.1 это подтверждает существование КСТС, теоретически предсказанное в [3]. Напомним, что с точностью до систематической ошибки ~ 30 в п/п. 1.1 доказана независимость от фаз A, В чисел отсчета, усредненных по θ_i .

Из двух χ^2 -минимумов более достоверен минимум $k_{A \min} = 15.27$, поскольку: конкурирующая выборка фазы В дефектна (см. выводы в π/π . 1.1); отсчитываемая от $\chi^2(\infty)$ глубина минимума больше для $\chi_{\rm A}^2$, т.к. $\chi_{\rm A}^2(\infty) - \chi_{\rm A\,min}^2 = 0.71 > \chi_{\rm B}^2(\infty) - \chi_{\rm B\,min}^2 =$ = 0.09; мера дефектов $d_{\rm AB\,Cr}$ равна нулю вблизи $k_{\mathrm{A}\,\mathrm{min}}$. Значит, экспериментальная ширина линии должна составлять $k_{\rm exp} = k_{\rm A\,min} \sim 15.3$, что в ~ 2 раза больше, чем дал анализ [1], основанный на гипотезе о разрешенности СТС. Основной вклад в $k_{\rm exp}$ должно дать уширение монопольного сдвига, не подавляемое флуктуациями поля Ферми [9]. Это не согласуется с минимальной шириной $k_{c \, \text{line}} \sim 15.6$, полученной в [3] без учета виртуальных переходов. Их учет в ч. 2 дает минимальное пороговое уширение контактным полем Ферми $3.47/p < k_{c \, line \, thr} <$ < 5.66/p, где p > 1. Это намного ниже, чем $k_{\rm exp} \sim$ ~ 15.3. Так и должно быть, поскольку ширина $k_{\rm exp}$ связана в основном с уширением монопольного сдвига.

2. Учет виртуальных переходов. Первая оценка $k_{c \, \text{line}}$, согласующаяся с опытом по порядку

Таблица 8

7 10 12.78 15.27 25.69 k4 200 ∞ $\chi^2_{\rm A}$ 59.9 9.34 2.72 1.20 0.84 1.34 1.49 0.781.01 1.48 55.1 9.69 3.32 1.61 1.06 0.85 0.68 0.730.77 0.77 $\chi_{\rm B}^2$ $N'_{A Cr}$ 114065 113508 113301 113188 113120 113077 112972 112885 112806 112778 114136 113535 113313 113193 113120 113074 112964 112873 112793112765 $N_{
m B\,Cr}$ -71-27-120 3 12 13 13 $D_{\rm AB\,Cr}$ -58 -0.33-0.24-0.130.10 0.31 0.43 $d_{\mathrm{AB\,Cr}}$ -0.310 0.400.4387.4 49.233.6 27.6 25.525.9 28.5 29.7 29.7 $\varepsilon D_{\mathrm{AB\,Cr}}$ 215 152.3 60.0 32.3 21.5 18.0 17.3 19.7 22.6 23.8 23.8 $\varepsilon_{N'{
m A\ Cr}}$ 151.8 63.5 37.1 25.8 20.9 18.7 16.8 17.417.8 17.8 $\varepsilon_{N\mathrm{B\,Cr}}$ Комментарии $d_{ABCr} = 0$ $= \min$ $= \min$

Анализ при КСТС [3], когда направление поля не влияет на резонансное поглощение

величины, была получена в [3] в простой модели усреднения СТВ на верхнем ("+") и нижнем ("-") уровнях ядра при времени усреднения $\tau_{av} \sim \tau$, где au – время жизни того уровня, который живет меньше (например, уровня "+" в переходе 109m Ag $^{-109}$ Ag). Виртуальные переходы с "+" на "-" и обратно сильно меняют $k_{c \, \text{line}}$. Виртуальные фотоны уходят от ядра не далее чем на длину волны $\lambda \sim 10^{-9}\,\mathrm{cm}$, так как при большем удалении начинается волновая зона реальных фотонов. Поэтому время жизни виртуального состояния $\langle - \rangle$ есть $\tau_- \sim \lambda/c = \hbar/E_\gamma \sim 10^{-20}\,\mathrm{c}$, где $E_{\gamma} \sim 88\,\mathrm{кэB}$ для $^{109}\mathrm{Ag}$. Поскольку на виртуальные переходы не существует жестких ограничений (например, поперечность волны, сохранение импульса), виртуальный переход более вероятен, чем реальный переход с вылетом у-кванта или электрона конверсии. Поэтому время жизни τ_+ виртуального состояния $\langle + \rangle$ много меньше наблюдаемого времени жизни τ уровня "+" и, значит,

$$\tau_{-} \sim \lambda/c = \hbar/E_{\gamma} \le \tau_{+} \ll \tau.$$
 (3)

Частота виртуальных переходов $\nu_v \sim 1/(\tau_+ + \tau_-)$ может быть выше частоты флуктуаций поля Ферми $\nu_{\rm F}$, т.е. $\nu_v \gg \nu_{\rm F}$. Так, если $\tau_+ \sim \tau_-$, то $\nu_v \sim 10^{20}\, \Gamma_{\rm II} \gg \nu_{\rm F} \sim 10^{16}\, \Gamma_{\rm II}$. Введем квантовое среднее момента ядра $\langle \hat{\bf I} \rangle$. Если единичный вектор ${\bf u} = \langle \hat{\bf I} \rangle/|\langle \hat{\bf I} \rangle|$ (см. текст под формулой (7) в [3]) в момент виртуального перехода не меняется, то вектор ${\bf u}$ вращается вокруг поля ${\bf H}_{Rf}$ с эффективной частотой Лармора (см. текст под формулой (8) в [3])

$$\Omega_{\rm ef} = (\mu/I)_{\rm ef} \mu_{\rm N} H_{Rf}/\hbar, \tag{4}$$

где $(\mu/I)_{\rm ef}=(\tau_+\mu_+/I_++\tau_-\mu_-/I_-)/(\tau_++\tau_-),$ $\mu_+,~\mu_-$ и $I_+,~I_-$ – магнитный момент μ и спин ядра I для уровней "+", "–", $\mu_{\rm N}$ – ядерный магнетон. Так как для $^{109}{\rm Ag}~\mu_+/I_+$ $\sim~8/7,$

 $\mu_-/I_- \sim 0.26$, имеем $(\mu/I)_{\rm ef} = 0.7$, если $\tau_+ = \tau_-$, и $(\mu/I)_{\rm ef} = 1.14$, если $\tau_+ \gg \tau_-$. Пороговые условия (10) из [3], $\tau_{av}(\mu_+\mu_{\rm N}H_{c\varepsilon_-}/I_+\hbar)^2/4\nu_{\rm F} \geq 1$ для "+" и $\tau_{av}(\mu_-\mu_{\rm N}H_{c\varepsilon_-}/I_-\hbar)^2/4\nu_{\rm F} > 1$ для "–", заменяются единым для обоих уровней пороговым условием

$$\tau_{av}\Omega_{ef\varepsilon}^2/4\nu_{\rm F} \ge 1,\tag{5}$$

где $\Omega_{ef\varepsilon}=(\mu/I)_{\rm ef}\mu_{\rm N}H_{c\varepsilon}/\hbar$ – среднеквадратичная эффективная угловая скорость $\Omega_{\rm ef}$ за время τ_{av} . Скорость $\Omega_{ef\varepsilon}$ отличается от Ω_{ef} использованием ср.кв. поля $H_{Rf\varepsilon}\sim H_{c\varepsilon}$, где $H_{c\varepsilon}$ – ср.кв. флуктуация поля Ферми, $\tau_{av}\sim \tau p\sim 60p\,{\rm c},\ \nu_{\rm F}\sim 5\cdot 10^{16}\,{\rm Гц}.$ Из (3) получаем порог поля Ферми:

$$H_{c\varepsilon} \ge (\hbar/\mu_{\rm N})(4\nu_{\rm F}/\tau_{av})^{1/2}/(\mu/I)_{\rm ef} = H_{c\varepsilon\,thr},$$
 (6)

где $\hbar/\mu_{\rm N}=2.105\cdot 10^{-4}\,{\rm c\cdot\Gamma c}$. Для $^{109}{\rm Ag}$ в среднем по кристаллу $|\langle\hat{\bf I}\rangle_{\rm cr}/I|_+=6/7,\,|\langle\hat{\bf I}\rangle_{\rm cr}/I|_-=1$ и

$$1.07 \cdot 10^4 p^{-1/2} \, \Gamma c \le H_{c \in thr} \le 1.74 \cdot 10^4 p^{-1/2} \, \Gamma c,$$
 (7)

где число 1.07 относится к случаю $\tau_+\gg\tau_-$, а число 1.74 — к случаю $\tau_+=\tau_-$. В силу (6) эти числа необходимо заменить меньшими, если реально $\nu_{\rm F}<5\cdot 10^{16}\,\Gamma$ ц. Несохранение ${\bf u}$ в момент виртуального перехода ведет к более мягким, чем (5)–(7), пороговым условиям [9]. Из (19) в [3] получаем пороговые вклады $k_{cthr}=\tau\Gamma_{cthr}$ от поля Ферми в уширения уровней. Например, $k_{c+}>k_{cthr}+=\tau\omega_{1\varepsilon thr}+|\langle\hat{\bf I}\rangle_{\rm cr}/I|_+/(3\tau_{av}\nu_{\rm F})^{1/2}=\tau H_{c\varepsilon thr}|\mu_+|\mu_{\rm N}/\hbar|\langle\hat{\bf I}\rangle_{\rm cr}/I|_+/(3\tau_{av}\nu_{\rm F})^{1/2}=\tau H_{c\varepsilon thr}|\mu_+|\mu_{\rm N}/\hbar|\langle\hat{\bf I}\rangle_{\rm cr}/I|_+/(3\tau_{av}\nu_{\rm F})^{1/2},$ т.е. имеем

$$k_{c thr^{+}} = (\tau/\tau_{av})(4/3)^{1/2} |\mu_{+}|| \langle \hat{\mathbf{I}} \rangle_{cr}/I|_{+}/(\mu/I)_{ef};$$

$$k_{c \min_{-}} = (\tau/\tau_{av})(4/3)^{1/2} |\mu_{-}|| \langle \hat{\mathbf{I}} \rangle_{cr}/I|_{-}/(\mu/I)_{ef},$$
(8)

$$k_{\text{cline}} \ge k_{c\,thr\,\text{line}} = k_{c\,thr^{+}}^{2} + k_{c\,thr^{-}}^{2})^{1/2} =$$

$$= (\tau/\tau_{av})(4/3)^{1/2} [(|\mu_{+}||\langle \hat{\mathbf{I}}\rangle_{\text{cr}}/I|_{+})^{2} +$$

$$+ (|\mu_{-}||\langle \hat{\mathbf{I}}\rangle_{\text{cr}}/I|_{-})^{2}]^{1/2}/(\mu/I)_{\text{ef}}. \tag{9}$$

Видно, что $k_{c\, {\rm line}\, thr}$ не зависит от $\nu_{\rm F}$, а при $\tau_{av}=\tau p$ (см. [3]) не зависит и от τ . Для $^{109}{\rm Ag}~|\mu_{+}|\sim 4$, $|\langle \hat{\bf I} \rangle_{\rm cr}/I|_{+}\sim 6/7,~|\mu_{-}|\sim 0.13,~|\langle \hat{\bf I} \rangle_{\rm cr}/I|_{-}=1$. Тогда для ECC–KCTC на изотопе $^{109}{\rm Ag}$ имеем

$$3.47/p \le k_{c \, \text{line} \, thr} \le 5.66/p,$$
 (10)

где 3.47 относится к случаю $\tau_{+}\gg\tau_{-},$ а 5.66 – к случаю $\tau_{+} = \tau_{-}$. При переходе от ¹⁰⁹ Ag к другим ядрамкандидатам на ECC-КСТС ограничение на $k_{c \, {
m line} \, thr}$ типа $A/p \le k_{c \, line \, thr} \le B/p$ не будет сильно отличаться от (10). И так как $k_{c \, {\rm line} \, thr}$ не зависит от $\nu_{
m F}$ и au, в рассмотренной здесь модели виртуальных переходов следует ожидать расширения круга ядер для КСТС на любые времена жизни, в отличие от простой модели усреднения, использованной в [3]. При этом основная идея модуляции СТВ флуктуациями поля Ферми одна и та же как здесь, так и в [3]. Оценки (7) для $H_{c\varepsilon thr}$ и (10) для $k_{c \operatorname{line} thr}$ намного ниже оценок $H_{c\varepsilon thr} \sim 4.8 \cdot 10^4 p^{-1/2} \, \Gamma c$ и $k_{c \, line \, thr} \sim 15.6/p$, сделанных в рамках простой модели усреднения СТВ в [3]. Не исключено также наличие ядер, для которых формула (10) даст $k_{c \, \text{line} \, thr} \sim 1/p$. Более мягкие оценки см. в [9].

3. Методы и формулы. Критерий $\chi^2(k)$ на степень свободы [10] и минимум $\chi^2(k)$ по k имеют вид

$$\chi^{2}(k) = \min_{C} \sum_{i} \{ [N_{i} - CY_{i}(k)] / \sigma_{i} \} 2 / F, \ \min_{k} \chi^{2}(k) =$$

$$= \min_{k} \min_{C} \sum_{i} \{ [N_i - CY_i(k)] / \sigma_i \}^2 / F, \tag{11}$$

где $Y_i(k)=Y(k,\theta_i,\psi)=Y_{k,i,\psi}$ и $CY_i(k)$ – выход квантов из пластины и теоретическое число отсчетов в точке θ_i , C – подгоночный параметр, F = m - l – число степеней свободы, m – число членов в сумме, l – число связей. Минимизация по C дает C = $= (\Sigma_i N_i Y_i / \sigma_i^2) / \Sigma_i (Y_i / \sigma_i)^2$. Это уравнение накладывает одну связь. Поэтому F = m - 1. Вместо ψ будем ставить индекс фазы A ($\psi = 0$) или B ($\psi = 83^{\circ} - \theta_i$). Выходы также зависят от ряда неварьируемых параметров (толщины пластины $d = 0.074 \,\mathrm{cm}$, ее высоты $d_1 = 1.6 \,\mathrm{cm}$ и ширины $d_2 = 2.4 \,\mathrm{cm}$, тех же размеров d_1, d_2 у входного окна детектора, отстоящего от пластины на расстояние $d_3 = 24.0 \,\mathrm{cm}$). Введем оси Декарта OZ (по нормали к пластине), OX (вдоль ее ширины) и OY (вдоль высоты). Начало O поместим в центре пластины. Пучок γ -лучей, задаваемых двугранными углами φ , δ (с вершинной осью OX) и φ_1, δ_1 (с вершинной осью OY), ограничен условиями $-\varphi_0 - \delta < \varphi < \varphi_0 - \delta$, $-\varphi_{10} - \delta_1 < \varphi_1 < \varphi_{10} - \delta_1$, где $\varphi_0 = d_1/2d_3 = 0.033$ рад, $\varphi_{10} = d_2/2d_3 = 0.05$ рад. Вершинная ось двугранного угла есть аналог вершины обычного плоского угла. Углы δ , δ_1 дают отклонение реального положения нормали к пластине от предполагаемого. Обычно полагают, что ось наблюдения и нормаль совпадают. При $|\delta|$, $|\delta_1|$, φ_0 , $\varphi_{10} \ll 1$ усреднение Y по z, φ , φ_1 имеет вид

$$Y(k, \theta_i, \psi) = Y_{k,i,\psi} =$$

$$= \int_{-\varphi_0 - \delta}^{\varphi_0 - \delta} (d\varphi/2\varphi_0) \int_{-\varphi_{10} - \delta_1}^{\varphi_{10} - \delta_1} (d\varphi_1/2\varphi_{10}) \int_0^d dz \, \rho_p T_e T_r,$$
(12)

где ρ_p — распределение родительского (parent) изотопа $^{109}\mathrm{Cd}$ в пластине по ее глубине $z,\,T_e$ — электронный фактор прозрачности для квантов $88.03\,\mathrm{kpB},\,T_r$ — гамма-резонансный фактор прозрачности, z —
текущая координата вдоль нормали к пластине OZ. На стороне пластины, обращенной к детектору, z=d. На обратной ее стороне z=0. Факторы $\rho_p,\,T_e,\,T_r$ имеют вид

$$\rho_p = \left\{ \exp[-b(d-z)^2] + \right.$$

$$\left. + \exp(-bz^2) \right\} / \int_0^d \left\{ \exp[-b(d-z')^2] + \exp(-b{z'}^2) \right] dz',$$

$$b = 636 \,\text{cm}^{-2},$$

$$T_e = \exp[-\mu_e(d-z)U],$$

$$U = [1 + \tan^2(\varphi + \delta) + \tan^2(\varphi_1 + \delta_1)]^{1/2},$$

$$\mu_e = 21.5 \,\mathrm{cm}^{-1}, \ T_r = 1 - f + f \exp(-UQ'), \ Q' = Q/f,$$

где f – фактор Мёссбауэра, 1 - f – доля нерезонансного излучения, $f \exp(-UQ')$ – доля резонансного излучения, вышедшего из пластины. В [1] T_r дается менее строгим выражением, e^{-UQ} . Однако числовое различие между T_r и e^{-UQ} мало́, так как $T_r \sim 1 - fUQ' = 1 - UQ \sim e^{-UQ}Q' = [D'/\sin(\theta + UQ')]$ $+ \varphi + \delta$]arctan{[$G(d-z)\sin(\theta + \varphi + \delta)$]/k}, G = $=1/h_0=0.826897\cdot 10^4\,\mathrm{cm}^{-1},\,h_0=c^2\hbar/(E_{\gamma}g\tau)$ – перепад высот, на котором сдвиг частоты γ -кванта из-за гравитации равен $1/\tau$, c – скорость света, \hbar – константа Планка, д – ускорение свободного падения, $D' = \xi(\sigma_w/2)[1/(1+\alpha_t)]fh_0\nu_{109}, \nu_{109}$ – плотность ядер $^{109}{
m Ag}$ в серебряной пластине, ξ – магнитный фактор, $\xi = \xi_{\rm A} = 17/64$ в фазе **A** и $\xi = \xi_{\rm B} = \xi_{\rm A}/2.06$ в фазе **B**, без магнитного поля $\xi = \xi_0 = 1, D' = D'_{\Delta} =$ $=5.963923 \cdot 10^{-5}/f'$ в фазе **A** и $D'=D'_{\rm A}/2.06$ в фазе **B**, без магнитного поля $D' = D'_0 = D'_A \cdot 64/17$, $\sigma_w = [(2I_e+1)/(2I_g+1)]\lambda^2/2\pi$ — волновое сечение в максимуме резонанса, I_e и I_g — спины ядра $^{109}{\rm Ag}$ в изомерном и основном состояниях, λ — длина волны, α_t — полный коэффициент внутренней электронной конверсии. Все перечисленные величины даны в [1]. В настоящей работе считается, что для детектора # 1 $\delta=\delta_1=0$. Расчеты с ненулевыми $\delta,\,\delta_1$ позволили бы использовать опыты при сбитой шкале углов $\theta,\,$ такой, например, как для детектора # 2 в [1,8]. При $\delta,\,\delta_1,\,\varphi_0,\,\varphi_{10}=0$ формула (12) примет вид

$$Y(k, \theta_i, \psi) = \int_{0}^{d} \rho(z) \exp[-\mu_e(d-z)] (1 - f + fe^{-P/f}) dz,$$

$$P = (D/\sin\theta)\arctan[(G/k)(d-z)\sin\theta], \qquad (13)$$

при $P/f\ll 1$ практически совпадающий с формулой $Y(k,\theta_i,\psi)=\int\limits_0^d \rho(z)\exp[-\mu_e(d-z)]e^{-P}dz$, принятой в [1], где $G=0.826897\,\mathrm{cm}^{-1},\ D=5.963923\cdot 10^{-5}$ для фазы A, а для фазы B параметр D взят в 2.06 раза меньше. Однако из формул (2), (3) статьи [1] этого не видно, так как фактор, зависящий от ψ , в них отсутствует, что, скорее всего, является опечаткой. Обозначив этот фактор буквой ξ , имеем $\xi_A/\xi_B=2.06$ (ср. с текстом под формулой (12)). Распределение плотности $\rho(z)$ для ядер $^{109}\mathrm{Cd}$ вдоль оси Z, нормальной к пластине, определено в [1] из эксперимента.

4. Перспективы уточнения, ускорения и расширения исследований по ЕСС-КСТС. Итак, теория ЕСС-КСТС (см. [3] и ч. 2 настоящей статьи) находится в согласии с первичными экспериментальными данными работы [1], но не с ее рабочей гипотезой о разрешенности СТС и, как следствие, о зависимости резонансного поглощения от угла ψ между волновым вектором и внешним магнитным полем \mathbf{H}_{ex} . Поэтому можно пренебречь магнитным полем Земли, что в несколько раз ускорит накопление данных. Вместе с тем использование полей выше $10^4 \, \Gamma c$, портящих ECC-КСТС, позволит оценить флуктуации поля Ферми. Итоги п/п. 1.1 помогут выявить и устранить систематические ошибки, в том числе дадут возможность использовать второй детектор с другой стороны пластины. Результаты ч. 2 расширяют область ядер и сред с ЕСС-КСТС, очерченную в [3]. Метод скорректированных чисел N_{Cr} и ч. 3 полезны в анализе ЕСС-КСТС. Эффекты КСТС-ЕСС можно наблюдать не только по сужению линии. Например, они ведут к 100-процентной деполяризации ядер и излучения. Исследования ECC–КСТС возможны не только в γ -резонансе, но и в других областях спектроскопии.

Автор глубоко признателен за помощь, оказанную в разное время: массивы числовых данных работы [1] были любезно предоставлены ее руководителем проф. А.В. Давыдовым (ИТЭФ, Москва); обработка этих массивов и получение результатов ч. 1 настоящей статьи были бы невозможны без консультаций по Фортрану у проф. В.Л. Бугаенко (ИТЭФ, Москва); недостающее звено в объяснении ЕСС было обнаружено в монографии [11]²⁾, рекомендованной автору 30 лет назад в качестве настольной книги Ю.А. Изюмовым (академик РАН, Институт физики металлов, Екатеринбург). Автор благодарит коллектив Отдела строения вещества им. Гольданского за многолетнюю поддержку.

- 1. Ю. Д. Баюков, А. В. Давыдов, Ю. Н. Исаев, Г. Р. Карташов, М. М. Коротков, В. В. Мигачев, Письма в ЖЭТФ **90**(7), 547 (2009).
- 2. А.В. Давыдов, Ю.Н. Исаев, В.М. Самойлов, Изв. РАН, сер. физ. **61**, 2221 (1997).
- 3. С. В. Карягин, Письма в ЖЭТФ **98**(3), 197 (2013).
- W. Wildner and U. Gonser, J. de Phys. Coll. Suppl. 40, 2 (1979).
- S. Rezaie-Serej, G.R. Hoy, and R.D. Taylor, Laser Physics 5, 240 (1995).
- V. G. Alpatov, Yu. D. Bayukov, V. M. Gelis, A. V. Davydov, Yu. N. Isaev, G. R. Kartashov, M. M. Korotkov, V. V. Milyutin, and V. M. Samoilov, Laser Physics 10, 952 (2000).
- V. G. Alpatov, Yu. D. Bayukov, A. V. Davydov, Yu. N. Isaev, G. R. Kartashov, M. M. Korotkov, and D. V. L'vov, Laser Physics 15, 1680 (2005).
- 8. V. G. Alpatov, Yu. D. Bayukov, A. V. Davydov, Yu. N. Isaev, G. R. Kartashov, M. M. Korotkov, and V. V. Migachev, Laser Physics 17, 1067 (2007).
- 9. С.В. Карягин, Статья направляется в ЖЭТФ.
- 10. Дж. Тейлор, Bведение в теорию ошибок, M., Mир (1985).
- 11. Н. Ашкрофт, Н. Мермин, Φ изика твердого тела, пер. А. С. Михайлова, под ред. М. И. Каганова, М., Мир (1979).
- 12. N. W. Ashkroft and N. D. Mermin, Solid State Physics, HRW, Philadelphia (1976).

²⁾Важную роль в рождении объяснения ЕСС [3] сыграли примечания в русском переводе [11] монографии [12].