Электронная структура SiN_x

А. Н. Сорокин, А. А. Карпушин, В. А. Гриценко

Институт физики полупроводников им. Ржанова СО РАН, 630090 Новосибирск, Россия

Поступила в редакцию 28 октября 2013 г.

В приближении сильной связи без использования подгоночных параметров рассчитана электронная структура обогащенного кремнием аморфного нитрида кремния SiN_x в зависимости от его химического состава. В расчетах использован предложенный авторами новый способ параметризации матричных элементов гамильтониана сильной связи, учитывающий изменение области локализации валентных электронов изолированного атома при его встраивании в твердое тело. Показано, что учет этих изменений позволяет рассчитывать электронную структуру, используя в качестве исходных данных параметры изолированных атомов. Последнее обстоятельство дает возможность вести расчет в абсолютной шкале энергий с нулем, соответствующим энергии электрона в вакууме.

DOI: 10.7868/S0370274X13230136

Аморфный нитрид кремния Si₃N₄ является одним из ключевых диэлектриков в технологии и конструкции кремниевых приборов. Он обладает свойством локализовать инжектированные в него электроны и дырки. Поэтому Si₃N₄ используется в качестве запоминающей среды в приборах флэш памяти, сохраняющих информацию при отключенном питании [1]. Нитрид кремния также применяется в технологии и конструкции приборов на основе А3В5 и А₂В₆. Особый интерес представляет нестехиометрический нитрид кремния, в частности нитрид, обогащенный избыточным кремнием, SiN_x (0 < x < 4/3) [2]. Это связано с тем, что изменение химического состава нестехиометрического нитрида кремния позволяет в широком диапазоне управлять его электрическими и оптическими свойствами. Действительно, если Si_3N_4 имеет ширину запрещенной зоны $E_q =$ = 4.5 эВ [3], то в SiN_x запрещенная зона E_q меняется в зависимости от состава в пределах от 4.5 до 1.6 эВ (ширина запрещенной зоны аморфного кремния). В настоящее время детально изучена электронная структура стехиометрического Si₃N₄ [4-6]. Атомная и электронная структура SiN_x изучалась в [7–10]. Однако детали электронной структуры и ее связь с атомными свойствами нестехиометрических нитридов кремния изучены недостаточно. Практически отсутствуют достоверные экспериментальные данные по зависимости электронной структуры SiN_x от x. В теоретических расчетах этой зависимости [8,10], основанных на методе сильной связи, используются подгоночные процедуры, не всегда достаточно обоснованные. Целью настоящей работы является расчет электронной структуры SiN_x без использования подгоночных параметров, ее связи с химическим составом SiN_x .

Для нахождения электронной структуры SiN_x мы рассчитаем локальную плотность состояний на узлах решетки диэлектрика методом сильной связи в модели решеток Бете. Такой расчет не только дает вид электронной структуры, но и позволяет выявить парциальный вклад атомных состояний в особенности этой структуры.

Локальная плотность состояний на узлах решетки определяется из следующего выражения:

$$N_{i\alpha} = -\frac{1}{\pi} \mathrm{Im} \big(G_{i\alpha,i\alpha} \big), \tag{1}$$

где $G_{i\alpha,i\alpha}(E+i0)$ – диагональный матричный элемент одноэлектронной функции Грина, являющейся решением системы уравнений:

$$\sum_{l,\gamma} [(E+i0)\delta_{i,l}\delta_{\alpha,\gamma} - H_{i\alpha,l\gamma}]G_{l\gamma,j\beta}(E+i0) = \delta_{ij}\delta_{\alpha\beta}.$$
(2)

Здесь $H_{i\alpha,l\gamma}$ – матричные элементы гамильтониана сильной связи в узельном представлении:

$$\hat{H} = \sum_{i\alpha} E_{i\alpha} \hat{c}^{+}_{i\alpha} \hat{c}_{i\alpha} + \sum_{j\beta} V_{i\alpha,j\beta} \hat{c}^{+}_{i\alpha} \hat{c}_{j\beta} + \text{h.c.} = (3)$$
$$= \sum_{i\alpha} H_{i\alpha,j\beta} \hat{c}^{+}_{i\alpha} \hat{c}_{j\beta} + \text{h.c.} \qquad (4)$$

$$= \sum_{i\alpha,j\beta} H_{i\alpha,j\beta} c_{i\alpha}^{\dagger} c_{j\beta} + \text{h.c.}$$
(4)

В (3) латинские индексы нумеруют позицию атома в решетке, а греческие символы – нумеруют атомные орбитали. Важнейшим для расчета локальной электронной структуры является определение матричных элементов гамильтониана сильной связи. В простейшем варианте метода сильной связи диагональные элементы матрицы гамильтониана сильной связи $H_{i\alpha,i\alpha}$ принимаются равными энергии атомного уровня α -й орбитали *i*-го атома в изолированном состоянии. Недиагональные элементы считаются пропорциональными интегралам перекрытия орбиталей соседних атомов решетки. В этом варианте не учитывается перенос заряда между атомами кристалла, который имеет место в ионных и ионноковалентных кристаллах. В работе [11] перенос заряда был учтен путем введения внутриатомной кулоновской корреляции, пропорциональной величине перенесенного заряда. При этом не было учтено то обстоятельство, что изменение зарядового состояния ведет к изменению области локализации встроенных атомов и, соответственно, к изменению кинетической и потенциальной энергии. Поэтому предложенные в [11] поправки не дали количественного согласия расчета электронной структуры и экспериментальных данных. Для согласования расчета и эксперимента пришлось проводить подгонку матричных элементов гамильтониана сильной связи под экспериментальный результат, что уменьшало предсказательную достоверность расчетов.

В настоящей работе продемонстрирован способ учета изменения области локализации валентных электронов при встраивании атомов (ионов) в кристалл (в том числе при переносе заряда в ионно-ковалентных кристаллах). Показано, как при этом меняются кинетическая и потенциальная внутриатомные энергии. Предложенным способом найдены матричные элементы гамильтониана сильной связи для SiN_x и рассчитана его электронная структура в зависимости от x.

Запишем диагональные матричные элементы $H_{i\alpha,i\alpha} = E_{i\alpha}$ *i*-го узла с α -м типом волновой функции в виде

$$H_{i\alpha,i\alpha} = H^0_{i\alpha,i\alpha} + U_{i\alpha} - T_{i\alpha}, \qquad (5)$$

где $H^0_{i\alpha,i\alpha}$ – диагональный элемент изолированного атома, $T_{i\alpha}$ и $U_{i\alpha}$ – изменение внутриатомной кинетической энергии и дополнительное кулоновское отталкивание, возникшие из-за изменения области локализации валентных электронов при образовании твёрдого тела. Эти изменения можно представить в виде

$$T_{i\alpha} = T_{i\alpha}^0 \left(\frac{a_i^0}{a_i}\right)^2, \qquad U_{i\alpha} = U_{i\alpha}^0 \left(\frac{a_i^0}{a_i}\right). \tag{6}$$

Величины $T_{i\alpha}^0 = \hbar^2 / [2m(a_i^0)^2]$ и $U_{i\alpha}^0$ являются параметрами изолированных атомов. Здесь a_i^0 – радиус *i*-го атома в изолированном состоянии, a_i – ионный

радиус этого атома с зарядом, соответствующим его зарядовому состоянию в твердом теле. Для самосогласованного расчета мы используем квадратичную интерполяцию зависимости радиуса атома от его зарядового состояния:

$$\tilde{a}_i = a_i^0 + k_{1i}\delta N_i + k_{2i}\delta N_i^2.$$
(7)

Здесь $\delta N_i = N_i - N_i^0$ – изменение числа электронов на *i*-м атоме при его встраивании в твердое тело, $N_i = \sum_{\alpha} n_{i\alpha}$.

Коэффициенты k_{1i}, k_{2i} получены экстраполяцией ионных радиусов атомов на дробные заряды.

Недиагональные матричные элементы $H_{i\alpha,j\beta}$ являются линейными комбинациями двуцентровых параметров $V_{ll'm}$. Индексы "l", "l", "m", "m" обозначают часть атомной волновой функции электрона: l, l' = 0(s), 1(p), 2(d) и т.д.; m = m' = 0, 1, 2 и т.д. Дополнительные индексы "a" и "c" отвечают аниону и катиону. Выражения для двуцентровых параметров даны в [12]. Здесь они не приводятся из-за своей громоздкости. Для расчета мы используем формулу, предложенную нами ранее в [9, 13]:

$$V_{i\alpha,j\beta} = \pm \sqrt{T_{i\alpha}T_{j\beta}n_{i\alpha}n_{j\beta}},\tag{8}$$

где $n_{i\alpha}$ вычисляется как

$$n_{i\alpha} = \int_{-\infty}^{E_{\rm F}} -\frac{1}{\pi} {\rm Im} \big(G_{i\alpha,i\alpha} \big) dE.$$
 (9)

При таком определении диагональные и недиагональные матричные элементы становятся зависящими от атомных уровней исходных атомов и локальной координации их в решетке через числа заполнения и должны определяться самосогласованно.

Значения исходных атомных и ионных радиусов, заимствованные из [14], приведены в табл. 1.

Таблица 1

Ион	(-3e)	(-2e)	(0)	(+4e)	(+5e)
$a_i(Si)$	1.98	-	1.17	0.39	—
$a_i(N)$	1.48	-	0.75	-	0.15

Как видно из таблицы, радиус встроенного атома заметно зависит от его зарядового состояния и также должен определяться самосогласованно. Поскольку расстояние d между атомами в твердом теле не равно сумме ионных радиусов, определенных по формуле (7), найденные для встроенных в Si₄N₄ атомов Si, N радиусы дополнительно масштабировались:

$$a_i = \tilde{a_i} \frac{d}{a_{\rm Si} + a_{\rm N}}.$$
 (10)

Письма в ЖЭТФ том 98 вып. 11-12 2013

Диагональные матричные элементы гамильтониана изолированных $(H_s^0 \ \text{u} \ H_p^0, \ H_{s^*}^0)$ и встроенных в нитрид кремния $(H_s \ \text{u} \ H_p, \ H_{s^*})$ атомов Si и N приведены в табл. 2. Величина внутриатомного кулоновского отталкивания взята из [11]. Она равна 7.64 и 13.15 эВ для кремния и азота соответственно.

Таблица	2	
raomina	4	

Атом	H_s^0/H_s	H_p^0/H_p	H_{s*}^0/H_{s*}
Si	-14.79/-9.910	-7.59/-2.859	-2.52/2.111
Ν	-26.22/-20.41	-13.84/-7.761	-3.39/2.789

Аморфный SiN_x можно рассматривать как непрерывную цепь атомов кремния, случайным образом связанных либо с атомами азота, либо с атомами кремния. Такая структура может быть смоделирована с помощью бете-решетки, в которой с вероятностью p реализуется связь Si–N, а с вероятностью 1 - p – связь Si–Si. Поскольку атом кремния координирован четырехкратно, а атом азота – трехкратно, SiN_x можно представить как набор случайных тетраэдров Si–Si_vN_{4- ν} с атомом Si в центре. Индекс " ν " обозначает число Si–Si-связей, а индекс " ν " принимает целочисленные значения от нуля до четырех. Распределение таких тетраэдров подчиняется биномиальному закону:

$$W_{\nu}(p) = C_4^{\nu} p^{(4-\nu)} (1-p)^{\nu}.$$
 (11)

В этой модели вероятность p = 3x/4 меняется от 0 до 1 при переходе Si \rightarrow SiN_x \rightarrow Si₃N₄.

Модель РБ характеризуется отсутствием замкнутых колец связей между узлами решетки. В сочетании с методом сильной связи она применяется при моделировании электронной структуры неупорядоченных сред (см., например, [8,9,13]). Как было показано в работе [15], топология РБ оказалась отличной заменой разупорядоченной топологии колец связей в аморфных структурах при расчете особенностей в энергетической плотности состояний. В частности, при использовании РБ центры тяжести зон остаются на месте и не происходит значимого перераспределения зарядового заполнения энергетических зон (полос) локальной парциальной плотности состояний (ЛППС), т.е. чисел заполнения, фигурирующих в формулах (7), (8). По этой причине модель РБ может надежно использоваться для расчета зарядового состояния атомов решетки и матричных элементов гамильтониана сильной связи по вышеописанному методу.

Письма в ЖЭТФ том 98 вып. 11-12 2013

Найденное с учетом табл. 2 зарядовое состояние атомов кремния и азота в зависимости от состава SiN_x приведено на рис. 1. Верификацию параметров,

Рис. 1. Заряд на атомах кремния: горизонтальные линии – в ν -м тетраэдре, сплошные кривые – в ν -м тетраэдре, умноженный на вероятность содержания этого тетраэдра в SiN_x, штриховая линия – зависимость x

используемых при расчете электронной структуры SiN_x, мы провели, рассчитав электронную структуру при x = 0 (для кремния) и x = 4/3 (для нитрида кремния). Результаты этого расчета и их сравнение с экспериментальными данными [16] и результатами расчета [8, 10] приведены в табл. 3. Все расчетные результаты и экспериментальные данные мы свели к единой шкале энергий с нулем, соответствующим энергии пика С [16]. Этот уровень расположен на 17.5 эВ ниже вакуумного. В той же таблице приведены результаты расчета и сравнение с экспериментом параметров Si и Si₃N₄.

Таблица 3*)

Параметр	Материал	Наш рез-т	[8]	[10]	Эксп. [16]
E_g	Si	1.2	1.97	1.2	1.2
	$\mathrm{Si}_3\mathrm{N}_4$	4.6	4.5	5.3	4.5
$Q_{\rm Si}$	$\mathrm{Si}_3\mathrm{N}_4$	1.50	0.56	2.08	1.40
$Q_{\rm N}$	$\mathrm{Si}_3\mathrm{N}_4$	-1.13	-0.42	-1.56	-1.05
E_v	Si	12.9	11.7	13.4	12.4
	$\mathrm{Si}_3\mathrm{N}_4$	11.6	10.0	11.4	11.0
Пик А	$\mathrm{Si}_3\mathrm{N}_4$	8.7	9.3	9.4	7.7
Пик В	Si_3N_4	5.5	7.4	4.4	4.7
Пик С	Si_3N_4	0.0	0.0	0.0	0.0

^{*)} E_v – положение вершины валентной зоны, E_g – ширина запрещенной зоны, $Q_{\rm Si}$ и $Q_{\rm N}$ – перенос заряда на атомы Si и N в Si₃N₄. Пик A соответствует линии K(N) (РЭС), пик В – линии K(Si) (РЭС), пик С – линии $L_{2,3}$ (Si) (РЭС).

Из табл. 3 следует, что наши результаты по совокупности параметров лучше соответствуют экспериментальным данным, чем полученные подгонкой параметров гамильтониана сильной связи под экспериментальные данные [8, 10]. Хотя качественное поведение кривых $E_g(x)$ как в наших расчетах, так и в [8, 10] одинаково, в точках x = 0 (кремний) и 1.33 (нитрид кремния) наблюдается количественное расхождение. Это наглядно проиллюстрировано на рис. 2. Из этого рисунка можно сделать заключение

Рис. 2. Эволюция ширины запрещенной зоны SiN_x в зависимости от x

о зависимости результатов расчета от способа подгонки. В частности, авторы [8] меняли параметры расчета так, чтобы получить правильную ширину запрещенной зоны Si₃N₄. В работе [10] подгонка велась под параметры кремния и под положение особенностей валентной зоны Si₃N₄. Наши результаты совпали с результатом [10], а в области состава, близкого к кремнию, и с результатами [8] по нитриду кремния. Поскольку наш результат получен без использования подгоночных процедур, можно ожидать его достоверности во всем диапазоне изменения параметра состава х. Рассчитанная эволюция электронной структуры обогащенного кремнием нитрида кремния в зависимости от степени обогащения приведена на рис. 3. Представленные результаты показали, что использование подгоночных процедур в методе сильной связи не дает возможности получить количественно правильное описание электронной структуры материалов с переменным составом. Однако даже простой учет изменения области локализации валентных электронов при встраивании атомов в твердое тело позволяет обходиться без подобных процедур в расчете электронной структуры этих материалов.

Рис. 3. Эволюция краев запрещенной зоны SiN_x в зависимости от x. Пунктирная линия характеризует положение уровня Si–Si-связи

С учетом сказанного в рамках модели решеток Бёте были рассчитаны электронная структура обогащенного кремнием нитрида кремния SiN_x и ее зависимость от степени обогащения. Определено зарядовое состояние атомов кремния и азота в зависимости от степени обогащения. Показана важность учета изменения области локализации валентных электронов при встраивании кремния и азота в нитрид кремния и происходящего при этом переноса заряда. Полученные результаты хорошо согласуются с экспериментальными данными по предельным случаям концентрации x = 0 (кремний) и 4/3 (нитрид кремния).

- 1. В.А. Гриценко, Строение и электронная структура аморфных диэлектриков в кремниевых МДП структурах, Новосибирск, Наука (2003), с. 280.
- 2. J. Robertson, Phil. Mag. 44, 215 (1081).
- V. A. Gritsenko, E. E. Meerson, and Yu. N. Morokov, Phys. Rev. B 57, R2081 (1997).
- Y. Roizin and V.A. Gritsenko, Dielectric Films in Advansis Microelectronics, ed. by M.R. Baklanov, M. Green, and K. Maex, Willey Sons (2007).
- H.-D. Mo., L. Ouyang, W.Y. Ching, I. Tanaka, Y. Koyama, and R. Riedel, Phys. Rev. Lett. 83, 5046 (1999).
- S.-Y. Ren and W.Y. Ching, Phys. Rev. B 23, 5454 (1981).
- R. Karcher, L. Ley, and R. L. Johnson, Phys. Rev. B 30, 1896 (1984).
- L. Martin-Moreno, E. Martinez, J. A. Verges, and F. Indurain, Phys. Rev. B 35(18), 9683 (1987).

- A. N. Sorokin, A. A. Karpushin, V. A. Gritsenko, and H. Wong, J. Appl. Phys. **105**, 073706 (2009).
- 10. J. Robertson, Phil. Mag. B 63(2), 47 (1991).
- 11. A.W. Harrison, Phys. Rev. B **31**, 2121 (1985).
- 12. W. Harrison, *Electronic Structure and the Properties of Solids*, Freeman and Company (1980).
- A. N. Sorokin, A. A. Karpushin, V. A. Gritsenko, and H. Wong, J. Non-Cryst. Solids 354, 1531 (2008).
- M. I. Shaskol'skaya, Crystallography, M., Vysshaya Skola (1976).
- J. D. Joannopoulos and F. Yndarain, Phys. Rev. B 10, 5164 (1974).
- V.A. Gritsenko, Electronic Structure and optical properties of Silicon Nitride, in: Silicon Nitride in Electronics, New York (1986), p. 138.