Нелинейный магнетотранспорт в двумерной электронной системе с анизотропной подвижностью

А. А. Быков^{+*1)}, А. В. Горан⁺, В. Майер^{$\times 2$)}, С. А. Виткалов^{$\times 2$)}

+Институт физики полупроводников им. Ржанова СО РАН, 630090 Новосибирск, Россия

*Новосибирский государственный технический университет, 630092 Новосибирск, Россия

[×] Physics Department, City College of the City University of New York, 10031 New York, USA

Поступила в редакцию 17 октября 2013 г. После переработки 31 октября 2013 г.

Изучен нелинейный магнетотранспорт двумерных (2D) электронов в селективно легированных гетероструктурах GaAs/AlAs с анизотропной подвижностью μ , имеющей максимальное значение в направлении [110], а минимальное – в направлении [110]. Обнаружено, что при увеличении постоянного электрического тока I_{dc} в холловских мостиках, ориентированных вдоль направления [110], переход 2D-системы в магнетополевое состояние с дифференциальным сопротивлением $r_{xx} \approx 0$ происходит при меньшей величине I_{dc} и сопровождается более глубоким "провалом" в область отрицательных значений r_{xx} по сравнению с мостиками, ориентированными вдоль направления [110]. Полученные экспериментальные результаты объясняются ролью подвижности в спектральной диффузии неравновесных носителей заряда.

DOI: 10.7868/S0370274X1323015X

В настоящее время полупроводниковые гетероструктуры, созданные современными технологическими методами, являются предметом всесторонних исследований. Актуальность этих исследований обусловлена тем, что они имеют фундаментальную значимость, стимулируют развитие технологии и важны для практического использования новых твердотельных структур в наноэлектронике. Одним из основных объектов изучения в физике низкоразмерых систем до сих пор остается высокоподвижный двумерный (2D) электронный газ в селективно легированных гетероструктурах на основе соединений A^3B^5 . В таких структурах транспортное время рассеяния носителей заряда au_{tr} много больше квантового времени жизни τ_q . Поэтому для 2D электронного газа возникает интервал магнитных полей, в котором выполняются следующие неравенства: $\omega_c \tau_{tr} \gg 1$; $\omega_c \tau_q < 1$, где ω_c – циклотронная частота. В настоящей работе речь пойдет о нелинейном транспорте 2D-электронов с анизотропной подвижностью именно в этом интервале магнитных полей в условиях, когда под уровнем Ферми находится большое количество уровней Ландау.

Значительный прогресс в исследовании неравновесных явлений в 2D-системах при больших факторах заполнения имел место сравнительно недавно в последние 10–15 лет [1]. Импульсом к исследованию нелинейного транспорта в условиях $\omega_c \tau_{tr} \gg 1$, $\omega_c \tau_q < 1$ стало открытие нового типа осцилляций дифференциального сопротивления r_{xx}, возникающих в 2D-системе под действием электрического поля Холла [2]. Было показано, что в холловских мостиках под действием тока I_{dc} возникают осцилляции r_{xx} , положение максимумов которых в магнитном поле *B* определяется соотношением $\gamma R_c e E_{\rm H} =$ $l=l\hbar\omega_c$, где $\gamma\approx 2, l$ – целое число, R_c – циклотронный радиус, а $E_{\rm H}$ – холловское электрическое поле. Обнаруженные осцилляции были объяснены туннелированием Зинера между заполненными и пустыми уровнями Ландау. К настоящему времени зинеровские осцилляции r_{xx} , индуцированные полем $E_{\rm H}$, обнаружены в гетероструктурах GaAs/AlAs [3], двойных квантовых ямах [4] и в 2D дырочном газе [5]. Недавно было установлено, что под действием постоянного электрического поля Е_{dc} зинеровские осцилляции проявляются в дифференциальной проводимости двумерных и квазидвумерных дисков Корбино [6, 7].

Вскоре после открытия осцилляций сопротивления, индуцированных электрическим полем Холла, было установлено, что в условиях сильной нелинейности в минимуме этих осцилляций r_{xx} принимает значение, близкое к нулю [8]. Падение r_{xx} с ростом

¹⁾e-mail: bykov@isp.nsc.ru

²⁾W. Mayer, S. A. Vitkalov.

*І*_{dc} было объяснено спектральной диффузией электронов, возникающей в 2D-системе в скрещенных электрическом и магнитном полях [9–11], а переход в состояние с $r_{xx} \approx 0$ – локальной нестабильностью электрического тока в условиях $r_{xx} < 0$ [12]. Теоретически и экспериментально было показано, что нелинейный транспорт 2D-электронов при больших факторах заполнения не может быть объяснен простым увеличением электронной температуры [9, 13]. Оказалось, что неравновесная функция распределения электронов по энергиям $f(\varepsilon)$ в этом случае имеет осциллирующую компоненту, период которой равен $\hbar\omega_c$ [9]. Данная компонента приводит к тому, что $f(\varepsilon)$ в энергетических интервалах с повышенной плотностью состояний становится более пологой. "Ступенчатая" зависимость $f(\varepsilon)$ и является одной из основных причин, по которым 2D-система в скрещенных электрическом и магнитном полях переходит в состояние с $r_{xx} \approx 0$.

Совсем недавно было показано, что магнетополевому состоянию с $r_{xx} \approx 0$, обнаруженному в 2Dсистемах и при помощи мостиков Холла, соответствует состояние с нулевой дифференциальной проводимостью $g_{xx} \approx 0$, которое возникает в 2D-дисках Корбино [14]. Стало очевидным, что имеется аналогия между состояниями с $\rho_{xx} \approx 0$ и $\sigma_{xx} \approx 0$, возникающими в 2D-системах под действием микроволнового излучения [15–21], и состояниями с $r_{xx} \approx 0$ и $g_{xx} \approx 0$, возникающими в скрещенных электрическом и магнитном полях. Однако на сегодняшний день остается открытым следующий вопрос: почему в одних 2D-системах переходу в состояние с $r_{xx} \approx 0$ предшествует глубокий провал в зависимости $r_{xx}(I_{dc})$ в область отрицательных значений r_{xx} [8], а в других такой провал отсутствует [22]? Одной из возможных причин возникновения резкого провала в зависимости $r_{xx}(I_{dc})$ может служить величина подвижности 2D-электронов. Проверке этого предположения и посвящена настоящая работа.

Исследованные нами селективно легированные гетероструктуры представляли собой одиночные квантовые ямы GaAs с боковыми сверхрешеточными барьерами AlAs/GaAs [23, 24]. Ширина квантовой ямы составляла 13 нм. Структуры вырацивались методом молекулярно-лучевой эпитаксии на (100) GaAs подложках. Холловские мостики изготавливались с использованием оптической фотолитографии и жидкостного травления. Они были ориентированы вдоль кристаллографических направлений [110] и [110], вдоль которых подвижность μ в гетероструктурах GaAs/AlAs имеет минимальное и максимальное значения [25]. Измерения проводились при $T = 4.2 \,\mathrm{K}$ в полях $B < 1 \,\mathrm{Tr}$ на мостиках, имеющих ширину $W = 50 \,\mathrm{mkm}$ и расстояние между потенциометрическими выводами $L = 250 \,\mathrm{mkm}$. Методически, как это показано на вставке к рис. 1а, измерялась величина V_{ac} при

Рис. 1. (а) – Зависимости $\rho_{xx}(B)$ и $\rho_{yy}(B)$ 2D электронного газа в гетероструктуре GaAs/AlAs при T = 4.2 K, измеренные на мостиках Холла, ориентированных в направлениях [110] и [110] и имеющих длину L = 250 мкм и ширину W = 50 мкм. На вставке изображена схема измерения: $(V_{ac}/I_{ac})(W/L) = \rho_{xx}$ при $I_{dc} = 0$; $(V_{ac}/I_{ac})(W/L) = r_{xx}$ при $I_{dc} \neq 0$. (b) – Зависимости r_{xx}/ρ_{0x} и r_{yy}/ρ_{0y} от I_{dc} при T = 4.2 K в магнитном поле B = 0.2 Тл. Стрелкой указано положение зинеровского максимума для l = 1

протекании через образец переменного тока I_{ac} и постоянного тока I_{dc} . Линейное сопротивление измерялось при $I_{dc} = 0$. Концентрация 2D-электронов составляла $n_e \approx 8.4 \cdot 10^{15} \,\mathrm{m}^{-2}$. Подвижности μ_x и μ_y , соответствующие направлениям [110] и [110], рассчитывались из удельных сопротивлений ρ_{0x} и

Письма в ЖЭТФ том 98 вып. 11-12 2013

 ρ_{0y} в нулевом магнитном поле. При $T = 4.2 \,\mathrm{K}$ они составляли $\mu_x \approx 130 \,\mathrm{m}^2/\mathrm{B}\cdot\mathrm{c}, \ \mu_y \approx 230 \,\mathrm{m}^2/\mathrm{B}\cdot\mathrm{c}.$

На рис. 1а представлены зависимости $\rho_{xx}(B)$ и $\rho_{uu}(B)$, измеренные на холловских мостиках, ориентированных вдоль направлений [110] и [110] соответственно. Видно, что сопротивление 2D-электронного газа в направлении [110] существенно больше, чем в направлении [110]. Такое различие обусловлено рассеянием 2D электронов на анизотропных шероховатостях гетерограниц, которые возникают в процессе синтеза гетероструктур GaAs/AlAs [26]. В магнитных полях до 0.1 Тл ρ_{xx} и ρ_{yy} слабо зависят от B, что указывает на классический характер электронного транспорта в этой области полей. При B > 0.1 Тл в зависимостях $\rho_{xx}(B)$ и $\rho_{yy}(B)$ наблюдается положительное магнетосопротивление, которое в исследуемых гетероструктурах является квантовым [27, 28]. Хорошо видно, что в изучаемой гетероструктуре осцилляции Шубникова-де Гааза возникают при температуре $T = 4.2 \,\mathrm{K}$ в магнитных полях $B > 0.5 \,\mathrm{Tr.}$

На рис. 1b приведены зависимости r_{xx}/ρ_{0x} и r_{uu}/ρ_{0u} от I_{dc} в магнитном поле B = 0.2 Тл. В соответствии с теорией [29] дифференциальное сопротивление 2D электронного газа в магнитном поле Bс ростом I_{dc} должно вначале падать, а затем возрастать и достигать максимума, обусловленного туннелированием Зинера между уровнями Ландау. Положение первого зинеровского максимума при больших факторах заполнения в условиях $\omega_c \tau_{tr} \gg 1$ определяется равенством [2] $\gamma R_c e E_{\rm H} = \hbar \omega_c$. Для максимумов, отмеченных на рис. 1b стрелкой, мы получили $\gamma \approx 1.93$. Близкая к 2 величина γ указывает на то, что эти максимумы действительно обусловлены туннелированием Зинера между уровнями Ландау. В отличие от зинеровских максимумов минимумы в зависимостях r_{xx}/ρ_{0x} и r_{yy}/ρ_{0y} от I_{dc} не совпадают, что обусловлено различной шириной "центральных" пиков. Одной из причин такого поведения дифференциального сопротивления в области малых токов может быть различная подвижность в исследуемых образцах.

Теория, рассматривающая транспорт 2Dэлектронов при больших факторах заполнения, предсказывает, что в области небольших электрических полей основной вклад в нелинейный отклик связан с ролью неравновесной функции распределения $f(\varepsilon)$ [9]. Вследствие сохранения полной энергии электрона ($\varepsilon + eE_{dc}x$) в электрическом поле E_{dc} диффузия электронов в координатном пространстве трансформируется в энергетическую. Решение диффузионного уравнения в этом случае дает нетривиальные осцилляции неравновесной функции распределения с периодом $\hbar\omega_c$. Возрастание амплитуды осцилляций вследствие диффузии ограничивается временем неупругого рассеяния τ_{in} , которое подавляет неравновесный вклад. С учетом вклада осциллирующей компоненты $f(\varepsilon)$, обусловленной спектральной диффузией неравновесных носителей заряда, продольное дифференциальное сопротивление r в области слабых полей E_{dc} описывается следующим соотношением [9, 10]:

$$r/\rho_{\rm D} = 1 + 2\delta^2 [(1 - 10Q_{dc} - 3Q_{dc}^2)/(1 + Q_{dc})^2],$$
 (1)

где $\rho_{\rm D}$ – квазиклассическое сопротивление Друде, $\delta = \exp(-\pi/\omega_c \tau_q)$ – фактор Дингла, $Q_{dc} = 2\tau_{in}/\tau_{tr})(eE_{dc}\nu_{\rm F}/\omega_c)^2(\pi/\hbar\omega_c)^2, \nu_{\rm F}$ – скорость Ферми.

В условиях, когда $E_{dc} \approx E_{\rm H}$, параметр Q_{dc} можно выразить как $Q_{dc} = (I_{dc}/I_0)^2$, где $I_0 =$ $(W/2\pi)(e^2/m^*)(n_e/\pi)^{1/2}(\tau_{tr}/\tau_{in})^{1/2}B$. Из соотношения (1) следует, что величина I₀ задает полуширину "центрального" пика, а его амплитуда определяется величиной δ^2 . Рис. 1b показывает, что амплитуды "центральны" пиков для мостиков, ориентированных в различных направлениях, приблизительно равны. Это говорит о том, что в исследуемых структурах $\tau_{qx} \approx \tau_{qy}$. Экспериментальные и расчетные зависимости $r_{xx}(I_{dc})$ и $r_{yy}(I_{dc})$ представлены на рис. 2а. Между ними наблюдается хорошее согласие. В качестве варьируемых параметров использовались величины δ , I_0 и ρ_D . Из теории следует, что полуширины "центральных" пиков I_{0x} и I_{0y} определяются величинами τ_{trx} , τ_{try} , τ_{inx} и τ_{iny} . Если предположить, что au_{inx} и au_{iny} равны, то величины I_{0x} , I_{0y} , μ_x и μ_y будут связаны соотношением $(I_{0x}/I_{0y})^2 = \mu_x/\mu_y$. Мы получили значение $(I_{0x}/I_{0y})^2 \approx 0.60$. Отношение подвижностей для исследуемых образцов составляет $\mu_x/\mu_y \approx 0.57$. Такое хорошее совпадение указывает на то, что причиной различия I_{0x} и I_{0y} является величина μ.

Сопоставление экспериментальных зависимостей с теоретическими позволяет определить не только значения I_{0x} и I_{0y} , но еще и величины τ_{qx} , τ_{qy} , τ_{inx} и τ_{iny} . Мы получили следующие значения для квантовых времен жизни: $\tau_{qx} \approx 5.37$ пс и $\tau_{qy} \approx 5.34$ пс. При этом транспортные времена рассеяния, вычисленные из μ_x и μ_y , составили $\tau_{trx} \approx 50.3$ пс и $\tau_{try} \approx 89$ пс. Тот факт, что τ_q оказалось много меньше τ_{tr} , вполне ожидаем и обусловлен малоугловым характером рассеяния 2D-электронов в исследуемых гетероструктурах [23, 24]. Вполне логично и то, что $\tau_{qx} \approx \tau_{qy}$. Времена τ_{tr} и τ_q определяются следующими соотношениями: $1/\tau_q = \int P(\theta)d\theta$, $1/\tau_{tr} = \int P(\theta)(1 - \cos\theta)d\theta$, где $P(\theta)$ – величина, пропорциональная вероятности рассеяния на угол θ . Эти соотношения показывают, что

Рис. 2. (а) – Зависимости r_{xx} и r_{yy} от I_{dc} при T = 4.2 К в магнитном поле B = 0.2 Тл. Сплошные линии – эксперимент. Значки – расчет по формуле (1): квадраты – при $\rho_{Dx} = 6.3$ Ом, $\delta = 0.322$, $I_{0x} = 16.3$ мкА, кружки – при $\rho_{Dy} = 3.45$ Ом, $\delta = 0.32$, $I_{0y} = 21$ мкА. (b) – Зависимости r_{xx}/ρ_{0x} и r_{yy}/ρ_{0y} от I_{dc} при T = 4.2 К в магнитном поле B = 0.5 Тл. Стрелками указаны пороговые токи I_{thx} и I_{thy} для мостиков Холла, ориентированных в направлениях [110] и [110]

 τ_q определяется процессами рассеяния на все углы, тогда как τ_{tr} за счет множителя $1 - \cos\theta$ – преимущественно процессами рассеяния на большие углы. Таким образом, при рассеянии на случайном анизотропном потенциале логично ожидать, что τ_q будет изотропным, а τ_{tr} – нет. Изотропным в изучаемой 2D-системе оказалось и время неупругого рассеяния: $\tau_{inx} \approx 1.1$ нс и $\tau_{iny} \approx 1.2$ нс.

На рис. 2b приведены зависимости r_{xx}/ρ_{0x} и r_{yy}/ρ_{0y} от I_{dc} в магнитном поле B = 0.5 Тл. Величина δ в этом поле существенно больше, чем в поле B = 0.2 Тл. Поэтому согласно соотношению (1) амплиту-

да "центрального" пика в поле $B = 0.5 \,\mathrm{Tr}$ должна возрасти, а величина дифференциального сопротивления в минимуме, соответственно, упасть. При этом соотношение (1) позволяет дифференциальному сопротивлению принимать отрицательные значения. Эксперимент показывает, что в поле B = 0.5 Тл дифференциальное сопротивление с ростом Idc вначале падает до нуля, затем проваливается в область отрицательных значений, а потом вновь выходит на нулевое значение. Впервые такое поведение дифференциального сопротивления 2D электронного газа в скрещенных электрическом и магнитном полях наблюдалось в работе [8]. Переход 2D-системы в магнетополевое состояние с $r_{xx} \approx 0$ был объяснен локальной нестабильностью электрического тока при $r_{xx} < 0$ [12]. Однако вопрос о том, при какой величине отрицательного r_{xx} 2D-система становится неустойчивой и разбивается на домены, до сих пор остается открытым.

Известно, что пространственно однородное распределение носителей заряда становится неустойчивым относительно малых флуктуаций, лишь начиная с некоторой критической величины отрицательного r, зависящей от особенностей системы [30]. Эксперимент показывает, что 2D-система, прежде чем перейти в состояние с $r_{xx} \approx 0$, может иметь устойчивое состояние с $r_{xx} < 0$. При этом "провал" в область отрицательных значений особенно ярко проявляется для мостиков, ориентированных в направлении [110]. Кроме того, отчетливо видно, что для таких мостиков переход в состояние с $r_{xx} \approx 0$ происходит при меньшей пороговой величине I_{thx}, чем в случае мостиков, ориентированных в направлении [110]. Также видно, что "центральный" пик для r_{xx}/ρ_{0x} имеет меньшую полуширину по сравнению с r_{yy}/ρ_{0y} . Очевидно, что наблюдаемое различие в полуширинах "центральных" пиков при $B = 0.5 \,\mathrm{Tr}$, как и при B = 0.2 Тл, обусловлено различием μ_x и μ_{y} . Мы полагаем, что наблюдаемое различие в пороговых токах также обусловлено ролью подвижности. Данный вывод согласуется с тем, что величина $(I_{thx}/I_{thy})^2 \approx 0.44$ оказалась близкой к величине μ_x/μ_y .

Таким образом, в настоящей работе исследован нелинейный магнетотранспорт 2D-электронов в селективно легированных гетероструктурах GaAs/AlAs с анизотропной подвижностью μ , имеющей максимальное значение в направлении [110] и минимальное – в направлении [110]. Обнаружено, что в холловских мостиках, ориентированных вдоль направления [110], дифференциальное сопротивление 2D электронного газа при больших факторах заполнения падает с ростом I_{dc} быстрее, чем в мостиках, ориентированных вдоль направления [110]. Показано, что эта особенность нелинейного транспорта в исследуемой 2D-системе обусловлена ролью подвижности в спектральной диффузии неравновесных носителей заряда. Выявлено влияние подвижности на условия перехода 2D-системы в магнетополевое состояние с нулевым дифференциальным сопротивлением. Установлено, что в холловских мостках, ориентированных вдоль направления [110], пространственно-однородное распределение носителей заряда становится неустойчивым относительно малых флуктуаций при значительно большей абсолютной величине отрицательного дифференциального сопротивления по сравнению с мостиками, ориентированными вдоль направления [110]. Такое поведение исследуемой 2D-системы мы связываем с анизотропией крупномасштабного рассеивающего потенциала.

Авторы благодарят М.В. Энтина и Л.И. Магарилла за плодотворные обсуждения экспериментальных результатов. Работа была поддержана РФФИ (проекты # 12-02-31709 и 11-02-00925) и National Science Foundation (DMR 1104503).

- I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, and M. A. Zudov, Rev. Mod. Phys. 84, 1709 (2012).
- C. L. Yang, J. Zhang, R. R. Du, J. A. Simmons, and J. L. Reno, Phys. Rev. Lett. 89, 076801 (2002).
- A. Bykov, J.-Q. Zhang, S. Vitkalov, A. K. Kalagin, and A. K. Bakarov, Phys. Rev. B 72, 245307 (2005).
- 4. A. A. Bykov, JETP Lett. 88, 394 (2008).
- Ya. Dai, Z. Q. Yuan, C. L. Yang, R. R. Du, M. J. Manfra, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 80, 041310 (2009)
- A.A. Bykov, D.V. Dmitriev, I.V. Marchishin, S. Byrnes, and S.A. Vitkalov, Appl. Phys. Lett. 100, 251602 (2012).
- А.В. Горан, И.С. Стрыгин, А.А. Быков, Письма в ЖЭТФ 96, 894 (2012).
- A. A. Bykov, J.-Q. Zhang, S. Vitkalov, A.K. Kalagin, and A.K. Bakarov, Phys. Rev. Lett. 99, 116801 (2007).

- I. A. Dmitriev, M. G. Vavilov, I. L. Aleiner, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. B 71, 115316 (2005).
- J. Q. Zhang, S. Vitkalov, A. A. Bykov, A. K. Kalagin, and A. K. Bakarov, Phys. Rev. B 75, 081305(R) (2007).
- J. Q. Zhang, S. Vitkalov, and A. A. Bykov, Phys. Rev. B 80, 045310 (2009).
- A. V. Andreev, I. L. Aleiner, and A. J. Millis, Phys. Rev. Lett. 91, 056803 (2003).
- N.R. Kalmanovitz, A.A. Bykov, S. Vitkalov, and A.I. Toropov, Phys. Rev. B 78, 085306 (2008).
- A. A. Bykov, S. Byrnes, S. Dietrich, S. Vitkalov, I.V. Marchishin, and D.V. Dmitriev, Phys. Rev. B 87, 081409(R) (2013).
- R. G. Mani, J. H. Smet, K. von Klitzing et al., Nature 420, 646 (2002).
- M. A. Zudov, R. R. Du, L. N. Pfeiffer et al., Phys. Rev. Lett. 90, 046807 (2003).
- 17. S. I. Dorozhkin, Письма в ЖЭТФ 77, 681 (2003).
- C. L. Yang, M. A. Zudov, T. A. Knuuttila et al., Phys. Rev. Lett. **91**, 096803 (2003).
- А. А. Быков, А. К. Бакаров, Д. Р. Исламов, А. И. Торопов, Письма в ЖЭТФ 84, 466 (2006).
- 20. А.А. Быков, Письма в ЖЭТФ 87, 638 (2008).
- A. A. Bykov, I. V. Marchishin, A. V. Goran, and D. V. Dmitriev, Appl. Phys. Lett. 97, 082107 (2010).
- 22. A. T. Hatke, H.-S. Chiang, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 82, 041304 (R) (2010).
- K.-J. Friedland, R. Hey, H. Kostial, R. Klann, and K. Ploog, Phys. Rev. Lett. 77, 4616 (1996).
- Д. В. Дмитриев, И. С. Стрыгин, А. А. Быков, С. Дитрих, С. А. Виткалов, Письма в ЖЭТФ 95, 467 (2012).
- 25. А. А. Быков, А. К. Бакаров, А. В. Горан и др., Письма в ЖЭТФ **74**, 182 (2001).
- A. V. Goran, A. A. Bykov, and A. I. Toropov, Semicond. Sci. Technol. 23, 105017 (2008).
- M. G. Vavilov and I. L. Aleiner, Phys. Rev. B 69, 035303 (2004).
- S. Dietrich, S. Vitkalov, D.V. Dmitriev, and A.A. Bykov, Phys. Rev. B 85, 115312 (2012).
- M. G. Vavilov, I. L. Aleiner, and L. I. Glazman, Phys. Rev. B 76, 115331 (2007).
- 30. В. Л. Бонч-Бруевич, Ш. М. Коган, ФТТ 7, 23 (1965).