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Extreme waves statistics for Ablowitz-Ladik system
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We examine statistics of waves for the problem of modulation instability development in the framework

of discrete integrable Ablowitz–Ladik (AL) system. Modulation instability depends on one free parameter h

that has the meaning of the coupling between the nodes on the lattice. For strong coupling h ≪ 1 the proba-

bility density functions (PDFs) for waves amplitudes coincide with that for the continuous classical Nonlinear

Schrodinger (NLS) equation; the PDFs for both systems are very close to Rayleigh ones. When the coupling is

weak h ∼ 1, there appear highly localized waves with very large amplitudes, that drastically change the PDFs

to significantly non-Rayleigh ones, with so-called “fat tails” when the probability of a large wave occurrence

is by several orders of magnitude higher than that predicted by the linear theory. Evolution of amplitudes for

such rogue waves with time is similar to that of the Peregrine solution for the classical NLS equation.
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1. Waves statistics for different nonlinear systems is

now one of the most intensively studied topics of non-

linear physics [1–8], especially in connection to rogue

waves. Oceanic rogue waves are proved to be dangerous

for navigation [9, 10], while their probability of occur-

rence is still under discussion. Optical rogue waves [11]

may damage optical systems, therefore their appearance

must be controlled. One of the common scenarios for

oceanic and optical rogue waves emergence is realized

via nonlinear focusing of waves in the result of the mod-

ulation instability development [9–11], described by the

classical Nonlinear Schrodinger (NLS) equation of fo-

cusing type. In this paper we examine waves statistics

for the same scenario applied to discrete counterpart

of the classical NLS equation, namely to the integrable

Ablowitz–Ladik (AL) system [12] of focusing type:

i
dΨn

dt
+

Ψn+1 − 2Ψn +Ψn−1

h2
+

+ γ|Ψn|
2Ψn+1 +Ψn−1

2
= 0,

Ψn(t = 0) = C + ǫ(n),

where n = ...,−1, 0, 1, ... is node number, t is time, h > 0

is coupling constant, γ > 0 is nonlinear coefficient, C

is level of initial condensate state and |ǫn| ≪ |C| is a

small noise. After the transformations h2 = h̃2/(γ|C|2),

t = t̃/(γ|C|2), Ψn = CΨ̃ne
it̃, and ǫn = Cǫ̃ne

it̃ this prob-

lem is reduced to
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i
dΨn

dt
+

Ψn+1 − 2Ψn +Ψn−1

h2
−Ψn +

+ |Ψn|
2Ψn+1 +Ψn−1

2
= 0,

Ψn(t = 0) = 1 + ǫ(n), (1)

where all tilde-signs are omitted. Thus, in contract to

the classical NLS equation that can be obtained from

Eq. (1) after the substitution x = nh in the limit h → 0,

problem of modulation instability development for the

AL system has one free parameter.

Let us suppose that the current state of a system

consists of multitude of uncorrelated linear waves,

Ψn =
∑

k

ak e
i(2πkn/M−ωkt+φk),

−M/2 ≤ n, k ≤ M/2− 1.

If ak and φk are random uncorrelated values and the

number of linear waves M is large enough, then un-

der the conditions of central limit theorem real ReΨn

and imaginary ImΨn parts of field Ψn are Gaussian-

distributed, and the probability to meet amplitude |Ψ|

(probability density function, PDF) obeys Rayleigh dis-

tribution (see [7]),

PDF(|Ψ|) ∼ |Ψ| exp(−|Ψ|2/2σ2).

In this paper we measure PDFs for squared ampli-

tudes that are exponential if the corresponding ampli-

tude PDFs are Rayleigh ones,

PDF(|Ψ|) ∼ |Ψ| exp(−|Ψ|2/2σ2) ⇔

⇔ PDF(|Ψ|2) ∼ exp(−|Ψ|2/2σ2),
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and compare the results with exponential dependencies

that we call Rayleigh ones for simplicity. In the en-

tire publication we use term “PDF” only in relation to

PDFs for (squared) amplitudes of waves. We measure

PDFs for entire field Ψn in contrast to absolute maxi-

mums or local maximums PDFs, and use normalization
∫

PDF(|Ψ|2) d|Ψ|2 = 1.

In the recent publication [7] it was demonstrated

that in case of the modulation instability described by

the continuous classical integrable NLS equation the

PDFs are generally still very similar to Rayleigh ones,

with small time-dependent deviations in the region of

medium amplitudes. The aim of the current publication

is to extend research made in [7] for the AL equation

(1), that is also integrable in terms of inverse scattering

transformation. For this purpose we take large (10 000

for most of the experiments) ensembles of initial data

and examine their evolution with time. Note that in [1]

there was already done some research in this direction

for Salerno system that includes AL system in one of its

limits, but the authors actually studied only one model

parameter h = 1. In this publication it will be demon-

strated that statistics of waves significantly depends on

h.

2. We solve Eq. (1) numerically with the help of

Runge–Kutta 4th-order method with time step ∆t ≤

≤ 10−4 in the box −M/2 ≤ n ≤ M/2− 1 with periodic

boundary conditions,

Ψ
−M/2−1 = ΨM/2−1, ΨM/2 = Ψ

−M/2.

Our test simulations confirmed that the PDFs do not

depend on the total number of nodes M if the coupling

coefficient h is fixed; in our experiments we used number

of nodes M from 128 to 8192.

As initial data we use condensate solution Ψn(t =

= 0) = 1 + ǫn perturbed by weak random lattice-

homogeneous noise |ǫn| ≪ 1, taken as a superposition

of Gaussian-distributed in k-space linear waves,

ǫn =
1

2π
F−1

(

A0e
iξk−κ2

k
/θ2

)

n

,

−M/2 ≤ n, k ≤ M/2− 1,

with relatively large dispersion θ = 5 (see [13]) and ar-

bitrary phases ξk for each k. Here κk = 2πk/(hM) is

wave vector, F and F−1 are forward and backward dis-

crete Fourier transforms respectively. We use small coef-

ficient A0 = 10−3 corresponding to average noise ampli-

tude
√

〈|ǫn|2〉ξ ≈ 10−4 (see [8]) in order to ensure that

deviations in wave action, energy and momentum inside

the ensembles are small. We checked our statistical re-

sults obtained with the help of this numerical schema

against other lattice-homogeneous statistical distribu-

tions of noise and other parameters A0 and θ, and also

against the size of the ensembles and implementation

of other numerical methods, and found no significant

difference.

3. For the given parameters of initial noise, the non-

linear stage of the modulation instability develops ap-

proximately to time shifts t ∼ 10. The shape of the

PDFs highly fluctuate then for the considerable period

of time, very similar compared to the classical NLS

equation [7]. For small h these fluctuations – exclud-

ing Fermi–Pasta–Ulam recurrence points – diminish to

time shifts t ∼ 30, for h ∼ 1 – to time shifts t ∼ 100.

After the fluctuations cease, we additionally average the

PDFs over time.

As shown on Fig. 1, for very small coupling coef-

ficients h the resulting PDFs turn out to be exactly

Fig. 1. (Color online) Averaged over ensemble and time

t ∈ [150, 250] squared amplitude PDFs for the continu-

ous classical NLS equation (results from [7], black) and

for Eq. (1) with h = 1.2 · 10−2 (blue), 0.20 (cyan), 0.39

(green), 0.79 (purple), and 1 (red). Inset shows the same

lines in the region |Ψ|2 ∈ [0, 10]

the same as for the continuous classical NLS equation:

the PDFs for both systems are very close to Rayleigh

ones with small but noticeable deviations from Rayleigh

shape. These deviations doesn’t depend on ensemble size

(see [7] for more details) and coincide between the clas-

sical NLS equation and the AL model. Significant differ-

ence from Rayleigh shape appears starting from h = 0.2

and then between h = 0.39 and 0.79 the PDFs become

significantly non-Rayleigh ones with severe “fat tails” for

large amplitudes, where the probability of occurrence is

by several orders of magnitude higher than that pre-

dicted by the linear theory.
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Typical large wave events are shown on Fig. 2a and b

for h = 0.1 and 1 cases respectively. For small h the

Fig. 2. Distribution |Ψn| of a typical large wave event for

h = 0.1 (a) and h = 1 (b). Inset on graph (b) shows |Ψn|

for h = 1 in higher node resolution

corresponding large wave is very similar to that of the

continuous classical NLS equation [7]. In case of h = 1

there appears highly localized peak occupying one node

only. Solution with h = 1 oscillates with node n signif-

icantly faster than with h = 0.1 because the coupling

between the nodes is much weaker.

Effect of energy localization is known for discrete

systems for decades (see for example [14, 15] and also

[1]), but so far it related to non-integrable systems with

inelastic breather collisions, when higher breathers be-

come higher and smaller breathers become smaller. The

same scenario is not valid for the AL system because

of the integrability: solitons and breathers collide elas-

tically.

Fig. 3a and b demonstrate evolution of absolute max-

imum max |Ψn| with time for the same events as on

Fig. 2a and b. In case h = 0.1 the corresponding large

wave event lasts about ∆T ≈ 0.5 and approaches in its

amplitude to 5, while for h = 1 it lasts only ∆T ≈ 0.3

Fig. 3. (Color online) solid black lines – evolution of abso-

lute maximum max |Ψn| with time for the same events as

on Fig. 2 for h = 0.1 (a) and h = 1 (b). Dashed blue lines –

fit by parabola f0(t) = a(t− t0)
2 + c, dashed-dotted green

lines - fit by secant function f1(t) = A/ cosh[λ(t − t0)],

dashed-dotted red lines – fit by inverse parabola f2(t) =

1/[a(t − t0)
2 + c]

but it’s amplitude hits 18.5. Evolution of absolute max-

imum was gathered with extremely high temporal reso-

lution of 1 measurement per each δT = 10−3 time shift,

that allows us to carefully examine it’s dependence on

time. We study two hypothesis for the evolution: expo-

nential,

f1(t) = A/ cosh[λ(t− t0)], (2)

and algebraic, similar to the evolution of the Peregrine

breather for the classical NLS equation [13],

f2(t) = 1/[a(t− t0)
2 + c]. (3)

For comparison purposes we also include fit by parabola

f0(t) = a(t− t0)
2 + c.

As shown on Fig. 3a, it is difficult to separate these

two hypothesis for small parameter h = 0.1: both hy-

pothesis fit pretty well. The situation changes for h = 1:

the algebraic hypothesis [13] clearly fits better. We
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would like to stress, that the large wave events we exam-

ined were not specially prepared in any sense, these are

random outcomes of the modulation instability that de-

veloped from condensate state perturbed by weak ran-

dom noise.

4. In the current publication we examined statis-

tics of waves that appear in the result of the modu-

lation instability development – a common scenario of

rogue waves emergence – in the framework of discrete in-

tegrable Ablowitz–Ladik system (1). We demonstrated

that the problem of modulation instability depends on

one free parameter h that has the meaning of the cou-

pling coefficient between the nodes on the lattice. In the

limit h → 0 the coupling is strong and the AL system

transforms into the continuous classical NLS equation

with x = nh. Our results in this case turn out to be

virtually the same as that for the classical NLS equa-

tion published in [7]: the PDFs for waves amplitudes

are very close to Rayleigh ones with very small but no-

ticeable deviations. These deviations doesn’t depend on

ensemble size and coincide between the classical NLS

equation and the AL system.

As parameter h increases, the coupling between the

nodes decreases, and the PDFs start changing notice-

ablely from h = 0.2. Between h = 0.39 and 0.79

the PDFs become significantly non-Rayleigh ones, re-

sembling the famous L-shape form characteristic to

extreme-value processes in some physical systems [1, 4,

5], when probability of a large wave appearance is by

several orders of magnitude higher than that predicted

by the linear theory.

For small h the extreme waves are smooth pulses

with amplitudes up to ∼ 5 and duration of about ∼ 0.5.

These waves are very similar to that for the classical

NLS equation. For weak coupling h ∼ 1 solutions Ψn

oscillate significantly more frequently with node num-

ber n, and extreme events represent very high peaks

with amplitudes up to ∼ 20, localized in a very few

nodes, and with duration of about ∼ 0.3. Evolution of

their amplitudes with time is very well approximated

by the algebraic law, similar to that of the Peregrine

solution for the classical NLS equation. For small pa-

rameters h ≪ 1, however, evolution of absolute maxi-

mum doesn’t allow to separate between exponential or

algebraic behavior. We would like to stress that the ex-

treme waves we examined are random outcomes of the

modulation instability development and are not initially

prepared in any sense.
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