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1. Introduction. A vortex moving in classical

liquids experiences the famous Magnus or Kutta–

Joukowski lift force. The vortex lines in a superfluid

were introduced in seminal papers by L. Onsager and

R. Feynman, and Abrikosov vortex lines in superconduc-

tors by A. Abrikosov. Quantized vortices in superfluids

and superconductors experience two extra forces, which

were introduced by Iordanskii and by Kopnin: Kopnin

force [1–3] and Iordanskii force [4, 5] (see Fig. 1).

The Iordanskii force is a counterpart of the Magnus

force produced by the normal component in the velocity

field of a vortex moving with respect to the normal exci-

tations. It exists both in Bose and Fermi superfluids and

has an universal form which does not depend on any spe-

cific model: its value is fundamental being determined

by the vortex winding number, density of the normal

component and the vortex velocity relative to the nor-

mal component. The reason for universality is that the

Iordanskii force has a topological nature and has the

same origin as the gravitational Aharonov–Bohm effect

in the presence of a spinning cosmic string [8].

The Kopnin force appears in the fermionic BCS sys-

tems: superconductors and fermionic superfluids. Vor-

tices there confine low-energy bound states – fermion

zero modes. When the vortex moves, spectral flow of

the excitation states is generated that transfers the vor-

tex momentum into the environment and leads to a

new type of transverse force on the vortex. The Kop-

nin spectral flow force is fundamental: it has the same

origin as the chiral (axial) anomaly in relativistic quan-

tum field theories. In chiral Weyl superfluid 3He-A, the

Kopnin force acting on vortex-skyrmions is described by

the Adler–Bell–Jackiw equation for chiral anomaly [9].

The Kopnin force, representing the momentum trans-
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fer between the vortex and the normal component of

the superfluid liquid, has full analogy with the transfer

of baryonic charge in the phenomenon of electroweak

baryogenesis [7].

In modern cosmology, the phenomenon of baryoge-

nesis is responsible for the excess of matter over anti-

matter in our Universe. So, both the Iordanskii and Kop-

nin forces have a close relation to fundamental physics of

elementary particles and gravity. In a superconductor,

the motion of a quantized Abrikosov vortex is the only

significant source of dissipation. This makes the Iordan-

skii and Kopnin forces of considerable technological im-

portance. In superfluids, the temperature dependence of

the transverse and friction forces calculated by Kopnin

and confirmed by measurements in superfluid 3He-B [7]

has led to the discovery of a unique phenomenon related

to quantum turbulence of vortex lines. The transition

to quantum turbulence is governed by a new Reynolds

number, the superfluid Reynolds number, that does not

depend on velocity, but is determined by the ratio of

transverse and drag forces [10, 11].

While developed for condensed-matter physics, in

neutron star physics the Iordanskii and Kopnin forces

have greatly clarified and extended the understanding

of vortex dynamics in neutron and proton superfluids.

The phenomenon of spectral flow, which has been ob-

served in superfluid 3He [7], controls the drift velocity of

vortices in the proton superconductor in a neutron star

and so determines the rate at which magnetic flux can

be expelled from the core to the crust [12]. In quark mat-

ter, these two forces have dominant contributions to the

dynamics of color-superconducting quark matter, which

in particular may exist in the core of a neutron star [13].

In Manchester experiments [7] the calculated by

Kopnin temperature dependence of the vortex forces

have been measured both on singular vortices in 3He-B
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Fig. 1. Balance of forces acting on a vortex line: three nondissipative forces and Stokes friction force. Here κ is the circulation

quantum; ρ is mass density of the liquid; ρn and vn are the normal component density and velocity; vs is the superfluid

velocity (velocity of “superfluid vacuum”). The Kopnin force emerges in superconductors and fermionic superfluids. For vortex-

skyrmion in chiral Weyl superfluids (Fig. 2), the parameter C, which enters Kopnin force, is determined by Adler–Bell–Jackiw

equation for chiral anomaly. In 3He-A, which belongs to this class of topological materials, the Kopnin parameter C ≈ ρ.

This prediction by Kopnin [6] is confirmed in Manchester experiments [7]. For singular vortices in nonchiral superfluid 3He-B,

the Kopnin parameter C(T ) depends on temperature T [7]. It changes from 0 at low T to ≈ ρ at large T > 0.6 Tc. In the

latter limit, C is fully determined by spectral flow and chiral anomaly. The reason for that is that the matter inside the core

of the vortex in non-chiral liquid represents the chiral liquid with Weyl points (Fig. 4)

and on continuous vortices in chiral superfluid 3He-A.

The latter vortex structures are called skyrmions, which

originally denoted the topologically twisted continuous

field configurations in quantum field theory [14]. The

quantized circulation around the continuous vortex is re-

lated to the topological winding number of the skyrmion

texture in the field of the unit vector l̂ along the direc-

tion of orbital angular momentum [15].

Skyrmion lattices have been first discussed in the

Kopnin paper [16], see Fig. 2, where it has been sug-

gested that skyrmions can be observed in 3He-A by

NMR techniquie. And indeed, vortex-skyrmions have

been experimentally identified in 3He-A in NMR exper-

iments [17]. The lattice of skyrmions has been later dis-

covered also in magnetic materials [18]. In both 3He-A

and in chiral magnetic systems an effective electrody-

namics emerges, although from different origins, but in

both cases this leads to an extra force acting on the

skyrmions. In 3He-A, the configurations of skyrmions in

the form of the vortex sheets have been also observed.

The structure of the vortex sheet depends on prepara-

tion and is determined by dynamics of skyrmions along

the sheet [19].

Extending the theory of the Kopnin force to chiral

superfluids with Weyl points, Kopnin already in 1991

predicted existence of fermionic bound states, which

have exactly zero energy [20]. In our days such fermions

are known as Majorana fermions – objects, which are

still elusive in particle physics, but may be observable

in topological superfluids and superconductors. Actu-

ally the paper [20] is in the origin of the consideration

of Majorana fermions in condensed matter [21].

The zero energy bound states on vortices in chiral

Weyl superfluids found by Kopnin have in addition the

remarkable property: their spectrum is dispersionless.

Now such flat bands are under intensive search in solid-

state materials. According to recent works by Kopnin

[20–22]), the singular density of states in the materials
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Fig. 2. Simplified illustration of the elementary cell of the

vortex lattice from Ref. [16]. Each cell represents the vor-

tex skyrmion, in which the unit vector l̂ along the direc-

tion of orbital momentum sweeps the 4π area on the unit

sphere. Here β is the polar angle of vector l̂

with flat band may open the route to superconductivity

at room temperature.

2. Kopnin force on vortex-skyrmion and chi-

ral anomaly. The chiral anomaly is the property of

chiral fermions in the presence of external gauge and

gravitational fields. In condensed matter, chiral fermions

are studied in superfluid 3He-A, which has topologically

protected Weyl points in quasiparticle spectrum. Chi-

ral fermions also exist in the chiral matter, which lives

in the core of quantized vortices. The chirality of the

core matter is the consequence of the violated time re-

versal symmetry by the currents circulating around the

core. To illustrate the chiral anomaly origin of the Kop-

nin force, let us start with force acting on the vortex

skyrmion in chiral Weyl superfluid, where the effect of

chiral anomaly is more pronounced.

The Weyl superfluid has Weyl points in the spec-

trum. Close to the Weyl points, quasiparticles behave

as relativistic massless chiral fermions interacting with

effective gravitational and gauge fields [25]. Since the

chiral anomaly originates from the spectral flow through

the Weyl points, and near the Weyl points the quasi-

particles are relativistic, they experience the gauge and

gravitational anomalies exactly in the same manner as

elementary particles in relativistic quantum field theo-

ries. The gauge anomaly is described by one-loop trian-

gle Feynman diagram in Fig. 3, in which fermion is inter-

acting with three gauge fields. These fields can be equal

or different, so in general the fermions can be character-

ized by charges Ka,Kb,Kc. The charges are conserved,

which means that the matrices of charges commute with

the Green’s function. That is why one can introduce the

Fig. 3. Chiral anomaly in the 3+1 spacetime arises from

triangle Feynman diagrams. Here Ka, Kb , Kc correspond

to the charges of three possible gauge fields acting on chiral

fermions. In case of baryogenesis by hypermagnetic field

Ka = B, the baryonic charge; and Kb = Kc = Y , the

hypercharge. In case of Kopnin force acting on continu-

ous vortex skyrmion Ka = p(a), the momentum of the

Weyl point; Kb = Kc = Q, the effective electric charge of

fermions living in the vicinity of the Weyl points, Q = ±1

symmetry protected topological invariant, which con-

tains the matrices Ka,Kb,Kc:

NKaKbKc
=

eαβµν

24π2 ×

tr

[

KaKbKc

∫

σ

dSαG∂pβ
G−1G∂pµ

G−1G∂pν
G−1

]

. (1)

Here σ is the 3D surface around the Weyl points in the

4D frequency-momentum space pµ = (ω,p); and tr de-

notes the trace over all the indices of the matrix Green’s

function G(pµ).

Using this topological invariant, one can write

any type of the Adler–Bell–Jackiw equation for chiral

anomaly. For example, the production rate of baryonic

charge in the presence of hyperelectric field EY and hy-

permagnetic field BY is

Ḃ(Y) =
1

4π2
NBY Y BY ·EY . (2)

The baryoproduction is determined the topological in-

variant NBY Y in Eq. (1), where the charge Ka = B is

the baryonic charge; and charges Kb and Kc are equal

to the hypercharge Y .

The similar equation is applicable for the production

of another fermionic charge – the quasiparticle linear

momentum p. In Weyl superfluids each Weyl point has

its momentum – the position p(a) in momentum space.

The production rate of the momentum is the force. In

case of a moving vortex this is the Kopnin force.

In 3He-A, the positions of the Weyl points is deter-

mined by the orbital momentum vector, p(a) = ±pF l̂.

Substituting into Eq. (2) the relevant fermionic charges

(Ka = p(a), the momentum of the Weyl point, and

Kb = Kc = Q, the effective electric charge of fermions
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living in the vicinity of the Weyl points), one obtains

that the rate of momentum production induced by the

time and space dependent l̂-texture is:

Ṗ =
1

4π2
N

p(a)QQ (B · E) . (3)

Here B = (pF /~)∇× l̂ and E = (pF /~)∂tl̂ are effective

“magnetic” and “electric” fields acting on Weyl quasipar-

ticles in 3He-A; Q = ±1 is the matrix of corresponding

“electric” charges. In 3He-A the ‘electric’ charge is op-

posite to the chirality of the Weyl quasiparticle. As a

result, the momentum production by the l̂-texture per

unit time per unit volume is

Ṗ = −
p3F

2π2~2
l̂

(

∂t̂l · (∇× l̂)
)

. (4)

Integrating this Eq. (4) over the cross-section of the

vortex-skyrmion in Fig. 2 moving with velocity vL with

respect to the heat bath, one obtains the Kopnin force

acting on skyrmion:

FKopnin = −2π~
p3F

3π2~3
ẑ× vL. (5)

Let us compare the Kopnin force with the traditional

Magnus force determined by the particle density n (see

Fig. 1, where the mass density ρ = mn):

FMagnus = 2π~ n ẑ× vL. (6)

In the weak coupling BCS regime, the density of the

liquid n in its superfluid state only slightly deviates

from the density of the liquid in the normal state,

nnormal state = p3F /3π
2
~
3. That is why from Eqs. (5)

and (6) it follows that in 3He-A, where the weak cou-

pling regime is applicable, the Kopnin force should prac-

tically compensate the Magnus force [6]. This compen-

sation has been observed in Manchester experiment on
3He-A [7].

3. Kopnin force on singular vortex. For the sin-

gular vortices the Kopnin force is also connected with

spectral flow. But as distinct from the case of continu-

ous vortex-skyrmions, the spectrum of fermionic quasi-

particles in the vortex core has minigap ω0(pz). Due to

discrete spectrum the spectral flow is suppressed. As a

result the parameter C, which enters the Kopnin force

in Fig. 1, is smaller than the mass density ρ and depends

on temperature. The Kopnin function C(T ) in Fig. 1 ap-

proaches zero in the limit of zero temperature, and ap-

proaches the spectral flow value ≈ ρ at T > 0.6 Tc [7].

The latter happens because at high temperature the dis-

tance between the core levels is smaller than the width

of the level due to dissipation, ω0τ ≪ 1, and the spectral

flow in the vortex core is restored.

The connection of the Kopnin force with the chi-

ral anomaly equations in the limit ω0τ ≪ 1 can be

visualized in the semiclassical limit, when momentum

p and coordinate r can be considered as independent

variables of Green’s function. Such consideration is ap-

plicable if the core size exceeds the coherence length [6].

The structure of the core of a singular vortex in 3He-

B is illustrated in Fig. 4. Inside the core, the quasipar-

Fig. 4. Illustration of the core structure of axisymmetric

vortex in 3He- B (from Ref. [26]). The core matter repre-

sents the chiral superfluid with 4 Weyl points in positions

p(a) = (±pF l̂1,±pF l̂2). The chiral anomaly, which comes

from the chiral fermions living near the Weyl points, is re-

sponsible for the Kopnin force acting on a moving vortex

ticle spectrum in semiclassical approximation contains

four Weyl points (two per each spin component) in po-

sitions p(a) = (±pF l̂1,±pF l̂2). Since the core matter

represents the chiral superfluid with Weyl points, the

Eq. (3) is applicable. Then integrating Eq. (4) over the

cross-section of the vortex core, one obtains the Kopnin

force in Eq.(5) (with extra factor 1/2 if one considers the

singly-quantized vortex instead of the doubly quantized

vortex-skyrnion in 3He-A).

4. Conclusion. Kopnin force represents the first re-

alization of the chiral anomaly in condensed matter.

Similar gauge anomalies are now popular in the

other systems, such as the dense quark-gluon matter in

QCD and hypothetical Weyl materials – Weyl semimet-

als, see Refs. [25–29].
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