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1. Introduction. In the year 2013 Vladimir Kon-

stantinovich Tkachenko passed away in the age of 76.

This sad event urges to review the legacy of this bril-

liant scientist in physics.

His active life in physics unfortunately was very

short because of health problems. He published not more

than about 10 papers but what papers! Tkachenko, be-

ing nominally (and really) an experimentalist, published

the papers, which Dyson [1] called “a tour de force of

powerful mathematics”. Tkachenko’s seminal works on

a vortex lattice in superfluid helium and its oscilla-

tion were written about 50 years ago but up to now

they remain actual and challenging in various areas

of physics, superfluid liquids, cold-atom Bose–Einstein

condensates, and astrophysics among them.

The series of Tkachenko’s papers on dynamics of vor-

tex lattices started from the paper [2], in which he calcu-

lated exactly the energy of an arbitrary periodic vortex

lattice and showed that the triangular lattice has the

lowest energy as in the mixed state of type II super-

conductors. In the second paper [3] he found (also ex-

actly) the spectrum of waves in the vortex lattice for all

wave vectors in the Brillouin zone. These waves are now

called Tkachenko waves. Finally in his third paper [4]

he demonstrated that in the long-wavelength limit the

Tkachenko wave is nothing else as a transverse sound

wave in the vortex lattice and its frequency is deter-

mined by the shear elastic modulus.

The following short review addresses the original

theory of Tkachenko waves suggested for superfluid 4He

and its nowadays extension on Tkachenko waves in

the Bose–Einstein condensate of cold atoms, and also

overviews a long and controversial story of attempts to

detect Tkachenko waves experimentally first in liquid
4He and pulsars and then in Bose–Einstein cold-atom

1)e-mail: sonin@cc.huji.ac.il

condensates, which culminated in an unambiguous ob-

servation of Tkachenko waves.

2. Tkachenko waves from the elasticity theory

of a two-dimensional vortex crystal. We start not

from the exact solution but from a more transparent ap-

proach deriving the Tkachenko wave from the elasticity

theory of the vortex lattice.

The equation of motion in the continuous elastic-

ity theory for atoms in the crystal lattice is the second

Newton law:

ρ
d2u

dt2
= f , (1)

where ρ is the mass density, u is the atom displacement,

and the force f is defined as a functional derivative of

the elastic energy of the crystal:

f = −δE
δu

= −∂E
∂u

+∇i

(

∂E

∂∇iu

)

= ∇i

(

∂E

∂∇iu

)

. (2)

We took into account translational invariance, which

eliminates the dependence of the energy from the con-

stant displacement u.

Like in the elasticity theory, in vortex dynamics one

can also introduce a continuous medium approximately

describing an array of discrete vortex lines. This means

that one carries out averaging (coarse-graining) of the

equations of hydrodynamics over rather long scales of

the order of intervortex distance. The approach is ac-

curate enough as far as parameters of the medium do

not vary essentially at the intervortex distance. This ap-

proach was called in Ref. [5] macroscopic hydrodynam-

ics. In contrast to the elasticity theory of atomic crys-

tals, the equation of vortex motion connects the force on

the vortex not with an acceleration but with velocities:

−ρ · 2Ω× (vL − v) = f , (3)

where Ω is the angular velocity vector, vL = du/dt is

the vortex velocity, and v is the average velocity of the
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liquid. We consider the T = 0 case when the center-

of-mass velocity coincides with the superfluid velocity.

The angular velocity Ω determines the vortex density

nv = 2Ω/κ, where κ = h/m is the circulation quantum

and m is the mass of a particle. The forces in Eq. (3)

are forces on all vortices piercing a unit area. In classi-

cal hydrodynamics the left-hand side of Eq. (3) is called

Magnus force. But in the theory of superfluidity and

superconductivity they usually relate the Magnus force

only with the term proportional to the vortex velocity

vL, while the term proportional to the fluid current ρv

is called Lorentz force.

The equations for vortex displacements must be sup-

plemented by the continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0, (4)

and by the Euler equation, which in the rotating coor-

dinate frame is [5]

∂v

∂t
+ 2Ω× vL = −∇µ. (5)

The continuity and the Euler equations allow to deter-

mine the liquid velocity v and the chemical potential

µ.

The expression for the elastic force can be ob-

tained on the phenomenological basis taking into ac-

count hexagonal symmetry of the triangular lattice. We

consider a 2D problem in the xy plane normal to the

angular velocity vector Ω (the axis z) with no depen-

dence on z. The general expression for the elastic energy

density in the 2D case is [6]

Eel =
C11

2
(∇ · u)2 +

+
C66

2

[

(∇yux +∇xuy)
2 − 4∇xux∇yuy

]

. (6)

Here C11 is the inplane compressibility modulus and C66

is the shear modulus. We used here Voigt’s notations for

elastic moduli [7] adopted in the theory of superconduc-

tivity. Equation (6) is a particular case of a more general

expression given in Refs. [5, 8], which took into account

the z dependence. From Eqs. (2) and (6) one obtains an

expression for the force on vortices:

f = (C11 − C66)∇(∇ · u) + C66∆u. (7)

The term proportional to the divergence ∇ · u can be

neglected in the low frequency (long wavelength) limit.

Then the components of the force fi = −∇jσij are de-

termined by the stress tensor

σij = −C66(∇iuj +∇jui) (8)

for purely shear deformation. Here subscripts i and j

take only two values x and y corresponding to the two

axes in the xy plane. Then the Eq. (3) of vortex motion

becomes

∂u

∂t
= vL = v +

C66

2Ωρ
[ẑ ×∆u]. (9)

It is convenient to divide the vortex displacement

field u(r) and the fluid velocity field v(r) into longitu-

dinal and transverse parts ( u = u‖+u⊥, v = v‖+v⊥),

so that ∇ ·u⊥ = ∇ ·v⊥ = 0 and ∇×u‖ = ∇×v‖ = 0.

In an incompressible liquid v‖ = 0 and the liquid ve-

locity v = v⊥ is purely transverse. Then Eq. (5) after

integration over time yields

v = −[2Ω× u‖]. (10)

After exclusion of v Eq. (9) yields the equations for lon-

gitudinal and transverse displacements u‖ and u⊥:

∂u‖

∂t
=
C66

2Ωρ
[ẑ ×∆u⊥], (11)

∂u⊥

∂t
= −2Ω× u‖. (12)

Excluding the small longitudinal displacement u‖ from

equations one obtains an equation similar to that for the

transverse sound in the conventional elasticity theory:

∂2u⊥

∂t2
= c2T∆u⊥, (13)

with

cT =

√

C66

ρ
(14)

being the velocity of the Tkachenko wave ∝ eik·r−iωt

with the sound-like spectrum ω = cTk. Vortices in the

Tkachenko wave move on elliptical paths, but the lon-

gitudinal component u‖ parallel to the wave vector k is

proportional to a small factor ω/Ω (see Eq. (12)). Thus

it is fairly accurate to consider the Tkachenko wave to

be a transverse sound wave in the two-dimensional lat-

tice of rectilinear vortices [4]. Comparing Eqs. (10) and

(12) one can see that in our approximation the liquid

and the vortices move with the same velocity. The phe-

nomenological approach cannot provide the value of the

shear modulus. But it is clear that the elastic energy is

in fact the kinetic energy of the velocity field induced

by the vortices, and scaling estimations show that the

shear modulus should be on the order of C66 ∼ ρκΩ.

Its exact value can be obtained from the exact value of

the energy of the vortex lattice obtained by Tkachenko

(Sec. 3).
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All experiments on Tkachenko waves dealt with fi-

nite cylindric liquid samples, and it is necessary to know

the boundary conditions for Tkachenko cylindric waves.

We restrict ourselves with axisymmetric modes.

The field of transverse displacements u⊥ may be de-

termined by a vector potential Ψ = Ψẑ:

u⊥ = ∇×Ψ = −ẑ ×∇Ψ. (15)

The potential Ψ must satisfy the wave equation

∂2Ψ

∂t2
− c2T∆Ψ = 0. (16)

Axisymmetric modes with the sound-like spectrum ω =

= cTk correspond to a cylindrical wave

Ψ = Ψ0J0(kr)e
−iωt,

ur ≈ 0, uϕ = −∂Ψ
∂r

= kΨ0J1(kr)e
−iωt,

(17)

where subscripts r and ϕ denote radial and azimuthal

components in the cylindric coordinate frame (r, ϕ).

Suppose that no external force acts upon the liquid,

which fills a cylinder of the radius R. Then eigenfrequen-

cies are defined by the condition that the total angular

momentum M does not vary. Since in the Tkachenko

wave the fluid and vortices move together

M = 2πρ

∫ R

0

vϕr
2dr = −2iωπρ

∫ R

0

uϕr
2dr =

= −2iωπρΨ0R
2J2(kR)e

−iωt. (18)

The condition M = 0 yields eigenfrequencies

ωi = j2,i
cT
R
, (19)

where j2,i denotes the ith zero of the Bessel function

J2(z). For the fundamental frequency j2,1 = 5.14. This

is a result obtained by Ruderman [9] who discussed

Tkachenko modes in pulsars (see Sec. 4).

The condition M = 0 is equivalent to the boundary

condition that the azimuthal component of the momen-

tum flux through the liquid boundary r = R vanishes.

This momentum flux is given by the relevant stress ten-

sor component σϕr in cylindrical coordinates:

σϕr(r) = −ρc2T
(

∂uϕ(r)

∂r
− uϕ(r)

r

)

. (20)

The condition σϕr(R) = 0 requires that

∂uϕ(R)

∂r
− uϕ(R)

R
= 0. (21)

This yields the same spectrum Eq. (19) as the condition

M = 0.

3. Exact solution of Tkachenko. Tkachenko has

found an exact solution for the vortex lattice and its

oscillation using the theory of elliptic functions on the

complex plane [2, 3]. It is well known that a two-

dimensional vector r(x, y) can be presented as a com-

plex variable z = x+ iy. Then the velocity field v(z) =

= vx + ivy induced by vortices located in nodes of a

vortex lattice with position vectors zkl = 2kω1 + 2lω2

(k and l are arbitrary integers) is given by

v(z) =
κ

2π
[ζ∗(z)− λz∗], (22)

where λ is a constant, which will be defined below, and

ζ(z) =
1

z
+
∑

k,l

′
(

1

z − zkl
+

1

zkl
+

z

z2kl

)

(23)

is the quasiperiodic Weierstrass zeta function [10] with

two complex semi-periods ω1 and ω2 and a prime means

exclusion of the term k = l = 0 from the sum. The

quasiperiodicity conditions are

ζ(z + 2kω1) = ζ(z) + 2kω1,

ζ(z + 2lω2) = ζ(z) + 2lω2.
(24)

The lattice is shown in Fig. 1 for the semi-periods ω1 =

Fig. 1. Vortex lattice before (solid lines) and after (dashed

lines) shear deformation

a/2 and ω2 = beiα/2. The unit cell area of the lattice is

A = 4Im(ω∗
1ω2) = ab sinα. (25)

Tkachenko has shown that a lattice with arbitrary semi-

periods rotates as a solid body with the angular velocity

Ω = κ/2A , if one chooses λ satisfying the condition

ζ(ω1) + λω1 = Ωω∗
1 . (26)

Taking into account the exact relation for Weierstrass

zeta function,

ω2ζ(ω1)− ω1ζ(ω2) =
iπ

2
, (27)
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another condition necessary for solid-body rotation is

also satisfied:

ζ(ω2) + λω2 = Ωω∗
2 . (28)

For symmetric triangular and quadratic lattices λ = 0.

The velocity field being known Tkachenko [2] found

after ingenious manipulations with integrals over ellip-

tic functions the exact value of kinetic energy per unit

area in the rotating coordinate frame for an arbitrary

vortex lattice:

E =
ρκΩ

2π

[

ln
2|ω1ω2|1/2

πrc
− ln 2

3

∣

∣

∣

∣

θ′1(0, τ)θ
′
1

(

0,− 1

τ

)∣

∣

∣

∣

]

=
ρκΩ

2π

[

ln

√

A|τ |
πrc

√
τI

− ln 2

3

∣

∣

∣

∣

θ′1(0, τ)θ
′
1

(

0,− 1

τ

)∣

∣

∣

∣

]

, (29)

where the complex parameter

τ = τR + iτI = ω2/ω1 =
b

a
eiα (30)

determines the type of the lattice,

θ1(z, q) = −i
∞
∑

n=−∞

(−1)nq(n+1/2)2ei(2n+1)z (31)

is one from the elliptic theta functions, and θ′1(z, q) is

its derivative with respect to the first argument z. The

energy has a minimum at τ = eiπ/3 (a = b =
√

κ/
√
3Ω,

α = π/3), which corresponds to the triangular lattice

with the energy density

Em =
ρκΩ

2π

(

ln

√
A

rc
− 1.321

)

.

In order to find the shear modulus let us deform

the triangular lattice without varying the vortex den-

sity as shown in Fig. 1. Then only the real part of τ

varies proportionally to the shear deformation uxy =

= 1
2 (∇yux +∇xuy): δτ = δτR = 2uxy sinα. Expanding

the energy density Eq. (29) with respect to τR and com-

paring it with the elastic energy (6) with ∇ · u = 0 one

obtains the exact value of the shear modulus:

C66 = ρc2T =
ρκΩ

8π
. (32)

4. Tkachenko waves in pulsars. Some features of

pulsar behavior have been explained by the hypothesis

that the rotating inner matter of pulsars is in the su-

perfluid state and is threaded by vortex lines. Among

such features were sudden spin-ups of pulsars (glitches)

and slow relaxation after the glitch [1, 11, 12]. In addi-

tion, very slow oscillations of the Crab pulsar’s period

have been observed [1]. Ruderman [9] has associated

this remarkable phenomenon with Tkachenko waves. He

considered waves in a cylinder, ignoring the difference

between cylindrical and spherical geometry. Inserting

into Eq. (19) the data for the pulsar in the Crab neb-

ula (Ω = 200 rad/s, R = 106 cm, κ = 2 · 10 cm2/s),

Ruderman found that the oscillation period for the fun-

damental mode s = 1 should be

T =
2π

ω1
= 9.73 · 106 s = 3.75 months

in good agreement with the observed period of ∼ 3

months. Dyson [1] argued that it is difficult to think

of any other internal motion, which would have a time

scale as long as this.

Ruderman’s model was rather idealized even for very

long cylinders when pinning of vortices to the solid sur-

face is important. In pulsars the solid crust confining the

neutron matter plays the role of a solid surface. More

on this issue was discussed in Ref. [5].

Later the interest to interpretation of pulsar oscilla-

tions in the terms of the Tkachenko mode declined to

some extent and other interpretations were suggested.

But recently some publications urged to return to the

Tkachenko-mode interpretation of long-period pulsar

oscillations [13–15].

5. Search of Tkachenko waves in superfluid
4He. The first attempt to observe a Tkachenko wave

in a laboratory was undertaken by Tkachenko himself

in the 1970s in a study of torsion oscillations of a light

cylinder immersed into rotating superfluid 4He and sus-

pended by a thin fiber [16]. The oscillating cylinder can-

not drag the superfluid component of the liquid but it

does drag the normal one. The latter makes superfluid

vortices to oscillate via mutual friction. No conclusive

data were obtained in this experiment. A later analy-

sis of this case (see Sec. VIII.D in Ref. [5]) showed that

an essential contribution of the Tkachenko mode would

be possible for rather fast rotation inaccessible at that

time.

Further efforts to discover Tkachenko waves exper-

imentally were stimulated by Ruderman’s theory ex-

plaining long-period oscillations of the pulsar rotation

velocity. For simulation of the process in pulsars, J.

Tsakadze and S. Tsakadze [17, 18] studied free rota-

tion of buckets of various shapes, cylindrical included,

filled with He II, and revealed rotation-period oscilla-

tions superimposed on the steady deceleration of ro-

tation. The oscillations disappeared above the λ point

that proved their superfluid nature. But the oscillation

frequencies observed for cylindrical vessels were nearly

eight times higher than the fundamental frequency pre-
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dicted by Ruderman [9] for this geometry. This disagree-

ment was explained by three-dimensional effects of pin-

ning and bending of vortices [19, 5]. These effects trans-

form the Tkachenko mode into a mixed mode combin-

ing the Tkachenko wave and the inertial wave with the

spectrum [19, 20]

ω =

√

4Ω2
p2

k2 + p2
+ c2Tk

2. (33)

Here p is the z component of the wave vector, which

appears in the mixed plane wave ∝ eik·r+ipz−iωt as a

result of pinning at surfaces normal to the rotation axis

(the axis z). Without the quantum contribution c2Tk
2

this is an inertial wave well known in hydrodynamics

of rotating classical fluids [21]. The quantum contribu-

tion depends on the container radius R since for the

Tkachenko-wave resonance k ∼ 1/R. The Tkachenko

velocity usually is very small (of order 1 cm/s). As a re-

sult, the frequency ω = cTk of the pure Tkachenko mode

is much smaller than Ω. Then according to Eq. (33) even

rather weak pinning leading to rather weak vortex bend-

ing (small p) can strongly influence the mode frequency.

As a result, the inertial-wave contribution essentially

exceeds the quantum (Tkachenko) contribution. The

inertial-wave contribution grows with decreasing of the

height L of helium in the container (the length of vor-

tices). J. Tsakadze and S. Tsakadze [17, 18] used cylin-

dric containers of moderate aspect ratio L/R when the

quantum Tkachenko contribution was negligible. There-

fore they observed the inertial-wave resonance. This was

proven by experimental detection [22] of properties pre-

dicted by the theory of the initial-wave resonance [19].

The observed oscillation frequency depended on L and

on the smoothness of the bottom, but did not depend

on the container radius R (see more detailed comparison

and discussion in Refs. [5, 22, 23]).

In further experiments, S. Tsakadze [24] used longer

cylindrical containers in an effort to reach the conditions

when pure Tkachenko waves are possible. He could not

do it completely, because it required impractical con-

tainers with too large ratios L/R, but he managed to

come fairly close to the case when the Tkachenko con-

tribution to the oscillation frequency was of the same

order as the inertial-wave contribution. S. Tsakadze no-

ticed an essential deviation from the frequency of the

inertial wave resonance. The deviation roughly agreed

with what was expected from the mixed-wave resonance

when the classical and the quantum contributions to the

spectrum Eq. (33) were of the same order. This was the

first experimental evidence of the Tkachenko elasticity

and consequently of crystalline order in the vortex lat-

tice.

The next attempt of observation of the Tkachenko

wave was undertaken by Andereck et al. [25, 26], who

claimed that they saw Tkachenko waves in the experi-

ment on torsional oscillations of a pile-of-disks immersed

into a rotating superfluid 4He. They observed a reso-

nance, which they connected with a peak in the density

of state caused by a minimum of the spectrum Eq. (33)

at given p. But the theoretical analysis of Andereck et

al. left unresolved a serious problem (by admission of

the authors themselves; see p. 288 in the paper by An-

dereck et al. [26]): how can the oscillations of disks, in-

troducing perturbations with wavelengths of the order

of the disk radius, generate waves whose wavelengths

are an order of magnitude smaller than the radius of

the disks? Andereck et al. believed that they observed

Tkachenko modes for very low aspect ratio L/R (L in

their case was a small distance between disks), which

was in conflict with the conclusion that because of pin-

ning observation of Tkachenko modes requires very high

aspect ratio. Later it was demonstrated [27] (see also

Ref. [5]) that the resonance observed by Andereck et al.

can be readily explained as a predominantly inertial-

wave resonance without any contribution of Tkachenko

rigidity.

In summary, experimental observation of Tkachenko

waves in superfluid 4He encountered serious problems

connected with pinning of vortices at solid surfaces

containing superfluids. Evidences of the Tkachenko

mode were rather circumstantial and did not allow a

decisive quantitative comparison with the theory. A

breakthrough in experimental observation of Tkachenko

waves became possible after discovery of a new type of

superfluids: Bose–Einstein condensates of cold atoms.

In these new superfluids a superfluid sample being con-

fined by a potential trap has no contacts with any solid

surface. This excludes the main hurdles for observation

of pure Tkachenko waves: pinning and competition with

the inertial-wave resonance. However, a number of as-

sumptions used in the Tkachenko theory became invalid:

incompressibility and homogeneity of the liquid. This re-

quired revision of the theory, which will be discussed in

the following sections.

6. Tkachenko wave in a compressible perfect

fluid. For a discussion of the effect of compressibility

on vortex oscillations we need to return to the general

linear equations of motion, Eqs. (4), (5), and (9). Let us

neglect first inhomogeneity of the liquid. Then the equa-

tions of motion have a plane wave solution ∝ eik·r−iωt

and after linearization become

−iωρ′ + ρk · v = 0, (34)

−iωv+ 2Ω× vL + ikµ′ = 0, (35)
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−iωu = v − C66k
2

2Ωρ
[ẑ × u], (36)

where ρ′ and µ′ are small corrections to the mass density

ρ and the chemical potential µ induced by the propa-

gating wave. Using the relation µ′ = (c2s/ρ)ρ
′ where cs

is the sound velocity one can exclude the density correc-

tion ρ′ and obtain the equation connecting the velocities

v and vL:

−iωv+ 2Ω× vL +
c2s
ρ
ik

k · v
iω

= 0. (37)

We should solve two 2D vector Eqs. (36) and (37). One

can divide the velocity and the displacement fields into

longitudinal (parallel to k) and transverse (perpendicu-

lar to k) parts again. We consider only low frequencies

ω ≪ csk excluding usual sound waves. Then the trans-

verse velocity −iωu⊥ approximately coincides with the

transverse velocity v⊥ of the liquid and excluding small

longitudinal velocity −iωu‖ Eqs. (36) and (37) reduce

to two equations for the longitudinal and the transverse

liquid velocities v‖ and v⊥:

2Ωiωv‖ = −ω2v⊥ +
C66k

2

ρ
v⊥,

2Ωiωv⊥ = −c2sk2v‖.
(38)

This yields the dispersion relation [19]

ω2 =
c2sc

2
Tk

4

c2sk
2 + 4Ω2

. (39)

This dispersion relation also follows from a more general

expression obtained by Volovik and Dotsenko [28] using

the method of Poisson brackets. In the limit cs → ∞
Eq. (39) yilds the spectrum of the Tkachenko wave in

an incompressible liquid. The compressibility strongly

alters the spectrum of this wave at small k ≪ 2Ω/cs,

making it parabolic:

ω =
cscT
2Ω

k2. (40)

In superfluid 4He and 3He the effect of compress-

ibility on inertial waves is rather academic, because the

space scale cs/Ω at which the incompressible-fluid hy-

drodynamics becomes invalid is extremely large (of or-

der hundreds of meters) and is not relevant to any real

laboratory experiment. So at that time, when this ef-

fect was first analyzed [19, 5], it was considered as a

theoretical curiosity, or belonging to some astrophysical

applications. The situation became essentially different

after discovery of the BEC of cold atoms. In contrast to

the both helium superfluids, BEC is a weakly interact-

ing Bose gas with very low sound speed and very high

compressibility. Importance of high liquid compressibil-

ity for Tkachenko waves in BEC was pointed out by

Baym [29].

In a compressible liquid centrifugal forces make the

liquid density essentially inhomogeneous at the scale

cs/Ω. At the distance r ∼ cs/Ω from the rotation axis

the linear velocity Ωr of solid body rotation becomes

of the same order as the sound velocity cs. Therefore,

the analysis of the homogeneous liquid presented above

is purely illustrative and cannot be directly applied to

practical problems arising in experiments of Tkachenko

waves in BEC of cold atoms. One should take into ac-

count inhomogeneity of the fluid.

Let us now consider axisymmetric Tkachenko modes

in a rotating finite BEC cloud of pancake geometry.

One can ignore variations along the axis of the pan-

cake, and the problem becomes two-dimensional. The

2D cloud is trapped by the parabolic potential 1
2mω

2
⊥r

2.

The Thomas–Fermi approximation [30, 31] yields an in-

verted parabola distribution of the mass density: ρ(r) =

= ρ(0)(1− r2/R2). Here R =
√
2cs(0)/

√

ω2
⊥ − Ω2 is the

cloud radius (Thomas–Fermi radius) and cs(0) is the

sound velocity at the symmetry axis r = 0. The radius

R grows with the angular velocity because of the ef-

fect of centrifugal forces. The Tkachenko mode in such

a geometry was investigated numerically with solving

the equations of Gross–Pitaevskii theory [32, 33]. On

the other hand, in experiments the cloud size R es-

sentially exceeded the intervortex distance. Therefore

a simpler approach based on the macroscopic hydrody-

namics explained in Sec. 2 can provide a deeper insight

into physics of the phenomenon [34].

Since compressibility effect becomes important at

k ∼ Ω/cs and the eigenvalues of k are expected to be of

the order of 1/R the compressibility effect is essential if

the parameter

s =
ΩR√
2cs(0)

=
Ω

√

ω2
⊥ − Ω2

(41)

is of order of unity or more. Thus at rapid rotation of

the BEC with angular velocity Ω close to the trap fre-

quency ω⊥ liquid compressibility should be taken into

account.

The equations of motion (38) for plane waves in a

homogenous compressible liquid can be transformed to

those describing a monochromatic axisymmetric cylin-

dric mode ∝ e−iωt in the cylindric system of coordinates:

2Ωiωvr = −ω2vt −
1

ρ(r)r2
∂

∂r

[

ρ(r)c2Tr
3 ∂

∂r

(vt
r

)

]

,

(42)

2Ωiωvt =
∂

∂r

{

c2s(r)

ρ(r)r

∂[ρ(r)rvr ]

∂r

}

. (43)
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Longitudinal and transverse components correspond to

radial (subscript r) and azimuthal (subscript ϕ) compo-

nents respectively. Now ρ, cs, and C66 = ρc2T depend on

the distance r from the rotation axis, but the Tkachenko

velocity cT does not depend on density. For a weakly in-

teracting Bose gas c2s is proportional to the density ρ.

Therefore the ratio c2s/ρ is a constant equal to its value

c2s(0)/ρ(0) in the cloud center r = 0.

As well as in an incompressible liquid, the flux of

the azimuthal component of the momentum through

the liquid boundary r = R given by Eq. (20) must van-

ish. Since the stress tensor (momentum flux) is pro-

portional to ρ and the latter vanishes at r = R, it

looks that the momentum flux through the bound-

ary vanishes independently from whether the bound-

ary condition Eq. (21) is satisfied or not. But this is

not true. Solving the equation of motion (42) close to

r = R by expansion in small (R−r)/R one obtains that

vt ≈ r[C1+C2 ln(R−r)], where C1 and C2 are arbitrary

constants. The component ∝ C2 diverges at r → R and

gives a finite contribution to the stress tensor despite

the factor ρ ∝ R − r. So this component should be ab-

sent. This requirement is satisfied only if the boundary

condition Eq. (21) takes place.

In addition to the boundary condition (21) we need

the second boundary condition imposed on radial liquid

velocity vr. We use the arguments similar to those used

for derivation of Eq. (21). The total mass balance re-

quires that the radial mass current ρ(r)vr(r) at the BEC

cloud border r = R vanishes. Solving Eq. (43) at r ≈ R

by series expansion (again neglecting terms ∼ (R− r)2)

one obtains:

vr(r) =
Ωiωvt(R)R

cs(0)2
R− r

2
+ C1

(

1 +
R− r

R

)

+
C2

R− r
.

(44)

The divergent component ∝C2 gives a finite mass flow

at the border and should be eliminated. Taking a deriva-

tive from vr and excluding the constant C1 from the ex-

pressions for vr and its derivative we receive the bound-

ary condition imposed on vr :

dvr(R)

dr
+
vr(R)

R
= − iωΩR

2cs(0)2
vt(R). (45)

It is useful to introduce the dimensionless variables

for Eqs. (42) and (43):

r̃ =
r

R
, ω̃ =

ωR

cT
, ṽr =

ivr
cT
, ṽt =

vt
cs(0)

. (46)

Then Eqs. (42) and (43) and the boundary conditions

to them become purely real and depend only on the

compressibility parameter s given by Eq. (41). Solving

them numerically one obtains reduced eigenfrequencies

ω̃i = fi(s) as functions of s. At large s the eigenfre-

quencies ω̃i = γi/s are inversely proportional to s. The

first two eigenfrequencies correspond to γ1 = 9.66 and

γ2 = 22.8. Returning back to dimensional frequencies at

rapid rotation (ω⊥ − Ω ≪ ω⊥) their values are

ωi =
γi
s

cT
R

≈
√
2γi

cT
cs(0)

(ω⊥ − Ω). (47)

Qualitatively this simple expression (aside from a nu-

merical factor) follows from the dispersion relation (40)

for Tkachenko plane waves taking into account that the

eigenmodes of the cloud correspond to wave numbers

k ∼ 1/R.

Let us now address the experiment, which pro-

vided the first unambiguous experimental observation

of Tkachenko waves. It is remarkable that in Bose–

Einstein condensates of cold atoms it was possible to ob-

serve Tkachenko waves visually. Fig. 2 shows the image

Fig. 2. Tkachenko mode excited in a rotating Bose–

Einstein condensate of 87Rb atoms by a pulse in two mo-

ments after the pulse [35]. Line are sin fits to distortions

of the vortex lattice by the Tkachenko mode

of Tkachenko wave obtained by Coddington et al. [35]

in a rotating Bose–Einstein condensate of 87Rb atoms.

In Fig. 3 black squares show experimental points [35]

plotted in our dimensionless variables by I. Coddington.

They were obtained for various parameters, but collapse

on the same curve, as expected from the present analy-

sis. The solid line in the same figure shows the numeri-

cally found first eigenfrequency ω1 plotted as a function

of Ω/
√

ω2
⊥ − Ω2 (solid line). Quantitative agreement be-

tween the theory and the experiment looks quite good.

Coddington et al. [35] measured also the ratio of the two

first frequencies ω2/ω1 = 1.8 at Ω/ω⊥ = 0.95, which cor-

responds to s = 3.04. The present theory predicts the

ratio ω2/ω1 = 2.09.

The agreement becomes worse at larger

s = Ω/
√

ω2
⊥ − Ω2. This can be connected with vi-

olation of the assumption, which the theory was based

Письма в ЖЭТФ том 98 вып. 11 – 12 2013



860 E. B. Sonin

Fig. 3. Comparison between the theory (solid line) and the

experiment (black squares). Here ω1 is the first Tkachenko

eigenfrequency and b =

√

κ/
√
3Ω is the intervortex dis-

tance

upon: the vortex lattice is an array of singular vortex

lines with the core size (of the order of the coherence

length ξ ∼ κ/cs) much less than the intervortex

distance b. One can call this the Vortex Line Lattice

(VLL) regime. With Ω approaching the trap frequency

ω⊥ the cloud radius R grows, and if the total number of

particles remain constant the particle density decreases.

The sound velocity cs decreases also and the core ra-

dius grows. When ξ becomes of the same order as the

intervortex distance b the vortex cores start to overlap

like in the mixed state of a type-II superconductor close

to the second critical magnetic field Hc2 ∼ Φ0/ξ
2 (Φ0

is the magnetic flux quantum). At the critical magnetic

field Hc2 the phase transition to the normal state takes

place. However, in a rotating BEC there is no phase

transition at the “critical” angular velocity Ωc2 ∼ κ/ξ2.

Instead the crossover to a new regime takes place: at

Ω ≫ Ωc2 all atoms condense into a state, which is a

coherent superposition of single-particle states in the

Lowest Landau Level (LLL) similar to that of a charged

particle in a magnetic field (the LLL regime). This

interesting regime, which is called also the mean-field

quantum Hall regime, is now the subject of intensive

experimental and theoretical investigations [31].

7. Search of Tkachenko waves in the LLL

regime. The plausible approach to the vortex dynam-

ics in the LLL regime is that the phenomenological the-

ory developed in Sec. 6 is still valid in this regime but

one should revaluate elastic moduli and the expressions

for the sound and the Tkachenko velocities cs and cT.

For this revaluation we consider an infinite periodic vor-

tex lattice in an infinite uniform liquid, neglecting first

the trapping potential but taking into account interac-

tion. In the Gross–Pitaevskii theory the Gibbs thermo-

dynamic potential is

G = −mµ|ψ|2 + ~
2

2m

∣

∣

∣

∣

(

−i∇− 2π

κ
v0

)

ψ

∣

∣

∣

∣

2

+
g

2
|ψ|4. (48)

Here ψ is the BEC wave function, µ is the chemi-

cal potential, g is the interaction constant, and v0 =

= [Ω× r] is the velocity of the solid body rotation. Let

us consider the gauge transformation ψ → ψeiφ, v0 →
→ v0+(κ/2π)∇φ with constant ∇φ. The Gibbs poten-

tial Eq. (48) is invariant with respect to this gauge trans-

formation if it is accompanied by translation, which cor-

responds to a shift of the rotation axis.

The exact wave function for this state was found in

the classical work by Abrikisov [36] for type-II super-

conductors close to Hc2, and later it was generalized for

an arbitrary unit cell of the vortex lattice [37, 38]. As

well as for type-II superconductors close to Hc2, in zero-

order approximation one can neglect interaction (non-

linear term ∝ |ψ|4). Then the linear Schrödinger equa-

tion is similar to that for a charged particle in a uniform

magnetic field:

mµψ = − ~
2

2m

[

(

∂

∂x
− i

2πv0x
κ

)2

+

(

∂

∂y
− i

2πv0y
κ

)2
]

ψ.

(49)

At µ = ~Ω/m it has a solution, which corresponds to

the lowest Landau level:

ψk ∝ exp

[

ikx− (y − yk)
2

2l2

]

, (50)

where l2 = κ/4πΩ and yk = −l2k. The solution is given

for the gauge with v0(−2Ωy, 0). The frequency 2Ω is the

analog of the cyclotron frequency ωc = eH/mc for an

electron in a magnetic field. If we consider a square L×L
with periodic boundary conditions, then k = −2πn/L

with the integer n. Using the condition 0 < yk < L,

one can see that the integer n should vary from zero to

the integer closest to L2/2πl2. This is the total num-

ber of LLL states, which is exactly equal to the number

of vortices 2ΩL2/κ. All these states are orthogonal to

each other and have the same energy. The degeneracy

is lifted by taking into account the interaction energy.

The solution, which corresponds to the periodic vortex

lattice with one quantum per lattice unit cell, is [38]

ψ =
∑

n

Cn exp

[

inkx− (y + l2nk)2

2l2

]

, (51)

Письма в ЖЭТФ том 98 вып. 11 – 12 2013



Tkachenko waves (in memory of V.K. Tkachenko) 861

where Cn+1 = Cn exp(2πib cosα/a), a, b, and the angle

α are the parameters of the unit lattice cell (see Fig. 1).

This solution yields the thermodynamic potential of

the infinite BEC in the LLL regime averaged over the

vortex lattice unit cell:

G = (−mµ+ ~Ω)n+
g

2
βn2, (52)

where n = 〈|ψ|2〉 is the average particle density and the

parameter [38]

β =
〈|ψ|4〉
〈|ψ|2〉2 =

√
τI

{

∣

∣θ3(0, e
2πiτ )

∣

∣

2
+
∣

∣θ2(0, e
2πiτ )

∣

∣

2
}

(53)

depends on lattice parameters a, b, and α via the com-

plex parameter τ determined by Eq. (30). Here

θ2(z, q) =
∞
∑

n=−∞

q(n+1/2)2ei(2n+1)z,

θ3(z, q) =
∑∞

n=−∞ qn
2

ei·2nz

(54)

are theta functions [10]. The minimum of the interac-

tion energy corresponds to the triangular vortex lattice

with β = 1.1596, a = b = 2l
√

π/
√
3, α = π/3. Accord-

ing to Eq. (52) the Gibbs potential has a minimum at

the particle density n = (mµ − ~Ω)/βg. This allows to

determine the sound velocity.

cs =

√

ρ
∂µ

∂ρ
=

√

βgn

m
. (55)

This insignificantly differs from the expression for the

sound velocity in the VLL regime by the factor
√
β,

which is very close to unity.

Calculation of the shear elastic modulus C66 in the

LLL regime is similar to that in the VLL regime. De-

forming the triangular lattice as shown in Fig. 1, the real

part τR of the complex parameter τ varies proportion-

ally to the shear deformation uxy. Expanding the ex-

pression Eq. (53) for β and comparing the term ∝ δτ2R
in the thermodynamic potential, Eq. (52), with the elas-

tic energy Eq. (6), one obtains the value of the shear

modulus:

C66 =
gn2

2

∂2β

∂ρ2
sin2 α = 0.2054ρc2s. (56)

This agrees with the value of the shear modulus known

[39, 40] for type-II superconductors close to the critical

field Hc2
2) and with the value obtained by Sinova et al.

2)In order to receive Eq. (56) from these papers one should use
the relation gn2 = (Hc2 − H)2/8πκ2β, which follows from the
Ginzburg–Landau theory in the limit κ = λ/ξ → ∞.

[41] (after taking into account the different definition of

the elastic modulus c66 by Sinova et al.: c66 = 2C66).

So in the LLL regime the Tkachenko velocity

cT =

√

C66

ρ
= 0.453cs (57)

is of the same order as the sound velocity, in contrast to

the VLL regime where cT ∼ csξ/b is much smaller than

cs because of small ratio ξ/b.

Equations (47) and (57) yield a very simple expres-

sion for Tkachenko eigenfrequencies in the LLL regime:

ωi = 0.641γi(ω⊥ − Ω). (58)

For the lowest eigenfrequency i = 1 with γ1 = 9.66

(see the paragraph before Eq. (47)) this yields ω1 =

= 6.19(ω⊥ − Ω). Note that the Tkachenko velocity in

the LLL regime is smaller than its value
√

κΩ/8π in

the VLL regime because of small sound velocity cs in

the LLL regime. However, the absolute values of the

eigenfrequencies grow at the crossover from the VLL to

the LLL regime because the ratio cT/cs grows at the

crossover.

Schweikhard et al. [42] increased the rotation speed

in an attempt to reach the LLL regime. They observed

linear dependence of the Tkachenko eigenfrequency on

small ω⊥ − Ω as was predicted by the theory. On the

basis of good quantitative agreement with the theo-

retical calculation for the LLL regime by Baym [43]

Schweikhard et al. concluded that they have already

reached the LLL regime. However, the correct value of

the shear modulus C66 in Eq. (56) is 10 times larger

than the value (81/80π4)ρc2s obtained by Baym [43] and

used for comparison. The frequencies of the observed

Tkachenko mode in fact about 4 times less than correct

theoretical values for the LLL regime. It is evidence that

the experiment has not yet reached the LLL limit. Since

experimental values of (ω⊥ −Ω)/ω⊥ look small enough,

apparently in order to reach the LLL limit more closely,

the experiment should be done with a smaller number

of atoms.

Concluding this section, let us consider restrictions

on the existence of the LLL regime. First, the energy of

the lowest Landau level, ~Ω, should exceed the interac-

tion energy per particle βgn ≈ gn. This yields the in-

equality n ≪ ~Ω/g ∼ nv~
2/mg. Second, the BEC with

a regular vortex lattice exists as far as the filling fac-

tor n/nv (the number of particles per vortex) exceeds

unity (see below), i.e., the inequality n ≫ Ω/κ is re-

quired. The two inequalities determine the interval of

filling factors, where the LLL regime exists:

~
2

mg
≫ n

nv
≫ 1. (59)
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So the LLL regime is observable only for a weakly inter-

acting Bose gas when g ≪ h2/m. The latter inequality

means that the coherence length ξ ∼ κ/cs ∼ ~/
√
mgn

exceeds the interparticle distance ∼ 1/
√
n.

What should happen with the LLL regime when the

filling factor n/nv approaches unity? Possible answers

to this question were investigated by theoreticians both

numerically and analytically [41, 43, 44]. They expect

melting of the vortex lattice and destruction of the Bose

condensate. Naturally the Tkachenko mode would dis-

appear in this case.

8. Tkachenko waves in a superfluid cold atom

Fermi gas. The theory of Tkachenko waves, both in an

incompressible and in a compressible liquid, can be ex-

tended on Fermi superfluids [45]. The difference between

a Fermi and a Bose superfluid is in the equation of state,

which connects the chemical potential and the particle

density. However, numerical calculations by Watanabe

et al. [45] of equations similar to Eqs. (42) and (43) have

shown that the difference in the equation of state has

a weak effect on the Tkachenko mode eigenfrequencies.

At the same time Watanabe et al. pointed out that in a

Fermi superfluid gas of cold atoms it is easier to provide

a larger number of particles in the cloud. This can help

to reach conditions when the effect of compressibility is

weaker and it is easier to determine the circulation quan-

tum from the Tkachenko eigenfrequencies. Tkachenko

waves in a superfluid Fermi gas of cold atoms are still

waiting their experimental observation.

9. Conclusion. The Tkachenko wave predicted a

half a century ago remains an object of intensive the-

oretical and experimental investigations because they

provide a valuable information on properties of the or-

dered vortex lattices. Now these investigations focus on

rotating cold atom superfluids. Here the first unam-

biguous observation of the Tkachenko mode was carried

out. Nowadays challenges for the experiments are ob-

servation of the Tkachenko wave in the lowest Landau

level regime (mean-field quantum Hall regime) and in

the Fermi superfluid gases. Since the existence of the

Tkachenko mode is intimately connected with the crys-

talline order in the vortex array, the Tkachenko mode

can be a probe of the vortex lattice melting at small

filling factors.

1. F. Dyson, Neutron Stars and pulsars, Fermi Lectures,

Accademia Nazionale dei Lincei, Roma (1970).

2. V.K. Tkachenko, ZhETF 49, 1875 (1965) [Sov. Phys.

JETP 22, 1282 (1965)].

3. V.K. Tkachenko, ZhETF 50, 1573 (1966) [Sov. Phys.

JETP 23, 1049 (1966)].

4. V.K. Tkachenko, ZhETF 56, 1763 (1969) [Sov. Phys.

JETP 29, 945 (1969)].

5. E.B. Sonin, Rev. Mod. Phys. 59, 87 (1987).

6. L.D. Landau and E. M. Lifshitz, Theory of Elasticity,

Pergamon Press (1970).

7. A.E. H. Love, A treatise of the Mathematical Theory of

Elasticity, Dover (1944).

8. G. Baym and E. Chandler, J. Low Temp. Phys. 50, 57

(1983).

9. M. Ruderman, Nature (London) 225, 619 (1970).

10. M. Abramowitz and I.A. Stegun, Handbook of Mathe-

matical Functions, Dover (1972).

11. M.A. Alpar, J. Low Temp. Phys. 31, 803 (1978).

12. P.W. Anderson, D. Pines, M. Ruderman, and J. Sha-

ham, J. Low Temp. Phys. 30, 839 (1978).

13. J. Noronha and A. Sedarkian, Phys. Rev. D 77, 023008

(2008).

14. S. B. Popov, Astrophys. Space Sci. 317, 175 (2008).

15. M.K. Shahabasyan, Astrophysics 52, 151 (2009).

16. V.K. Tkachenko, ZhETF 67, 1984 (1974) [Sov. Phys.

JETP 40, 985 (1975)].

17. J. S. Tsakadze and S. J. Tsakadze, Pis’ma v ZhETF 18,

605 (1973) [JETP Lett. 18, 355 (1973)].

18. J. S. Tsakadze and S. J. Tsakadze, Usp. Fiz. Nauk 115,

503 (1975) [Sov. Phys. Usp. 18, 242 (1975)].

19. E.B. Sonin, ZhETF 70 (1970) [Sov. Phys. JETP 43,

1027 (1976)].

20. M.R. Williams and A. L. Fetter, Phys. Rev. B 16, 4846

(1977).

21. H.P. Greenspan, The Theory of Rotating Fluids, Cam-

bridge University Press (1968).

22. S. J. Tsakadze, ZhETF 71, 754 (1976) [Sov. Phys. JETP

44, 398 (1976)].

23. J. S. Tsakadze, S. J. Tsakadze, and E.B. Sonin, Phys.

Rev. B 21, 3028 (1980).

24. S. J. Tsakadze, Fiz. Nizk. Temp. 4, 148 (1978) [Sov. J.

Low Temp. Phys. 4, 72 (1978)].

25. C.D. Andereck, L. Chalupa, and W. I. Glaberson, Phys.

Rev. Lett. 44, 33 (1980).

26. C.D. Andereck and W. I. Glaberson, J. Low Temp.

Phys. 48, 297 (1982).

27. E.B. Sonin, Pis’ma v ZhETF 37, 82 (1983) [JETP Lett.

37, 100 (1983)].

28. G.E. Volovik and V. S. Dotsenko, ZhETF 78, 132 (1980)

[Sov. Phys. JETP 51, 65 (1980)].

29. G. Baym, Phys. Rev. Lett. 91, 110402 (2003).

30. L. Pitaevskii and S. Stringari, Bose–Einstein condensa-

tion, Oxford University Press (2003).

31. M. Ueda, Fundamentals and new frontiers of Bose–

Einstein condensation, World Sciientific (2010).

32. T. Mizushima, Y. Kawaguchi, K. Machida, T. Ohmi, T.

Isoshima, and M.Salomaa, Phys. Rev. Lett. 92, 060407

(2004).

Письма в ЖЭТФ том 98 вып. 11 – 12 2013



Tkachenko waves (in memory of V.K. Tkachenko) 863

33. L. O. Baksmaty, S. J. Woo, S. Choi, and N.P. Bigelow,

Phys. Rev. Lett. 92, 160405 (2004).

34. E. B. Sonin, Phys. Rev. A 71, 011603(R) (2005).

35. I. Coddington, P. Engels, V. Schweikhard, and E. A.

Cornell, Phys. Rev. Lett. 91, 100402 (2003).

36. A.A. Abrikosov, ZhETF 32, 1142 (1957) [Sov. Phys.

JETP 5, 1174 (1957)].

37. W.H. Kleiner, L. M. Roth, and S.H. Autler, Phys. Rev.

133, A1226 (1964).

38. D. Saint-James, G. Sarma, and E. J. Thomas, Type II

superconductivity, Pergamon Press (1969).

39. R. Labusch, Phys. Stat. Sol. 32, 439 (1969).

40. E.H. Brandt, Phys. Stat. Sol. 36, 381 (1969).

41. J. Sinova, C. B. Hanna, and A.H. MacDonald, Phys.

Rev. Lett. 89, 030403 (2002).

42. V. Schweikhard, I. Coddington, P. Engels, V. P. Mo-

gendorff, and E. Cornell, Phys. Rev. Lett. 92, 040404

(2004).

43. G. Baym, Phys. Rev. A 69, 043618 (2004).

44. N.R. Cooper, N.K. Wilkin, and J.M. F. Gunn, Phys.

Rev. Lett. 87, 120405 (2001).

45. G. Watanabe, M. Cozzini, and S. Stringari, Phys. Rev.

A 77, 021602(R) (2008).

Письма в ЖЭТФ том 98 вып. 11 – 12 2013


