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We study the stationary surface photocurrent in 2D electron gas near the helium surface. Electron gas is

assumed to be attracted to the helium surface due to the image attracting force and an external stationary

electric field. The alternating electric field has both vertical and in-plane components. The photogalvanic ef-

fect originates from the periodic transitions of electrons between quantum subbands in the vertical direction

caused by a normal component of the alternating electric field accompanied by synchronous in-plane accel-

eration/deceleration due to the electric field in-plane component. The effect needs vertical asymmetry of the

system. The problem is considered taking into account a friction caused by the electron-ripplon interaction.

The photocurrent resonantly depends on the field frequency. The resonance occurs at field frequencies close

to the distance between well subbands. The resonance is symmetric or antisymmetric depending on the kind

(linear or circular) of polarization.
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Introduction. The surface photogalvanic effect

(PGE) (the stationary in-plane photocurrent) arises in

confined systems. This photocurrent exists even if crys-

tal asymmetry is negligible, but the quantum well is ori-

ented (up and down normals are not equivalent). The

current along the surface occurs if the microwave elec-

tric field has both in- and out-plane components. Dif-

ferent solid systems have been examined, classical [1]

and quantum [2, 3] films, and the systems with a single

boundary where the in-plane PGE current flows in the

vicinity of this boundary [4–6].

The phenomenology of surface PGE in the absence

of magnetic field is determined by the relation for the

current density

j = αs
{

[E− n(nE)](nE∗) + c.c.
}

+ iαa[n[EE∗]], (1)

where n is the normal to the quantum well, E(t) =

= Re(Ee−iωt) is the uniform microwave electric field.

Real constants αs and αa describe linear and circu-

lar photogalvanic effects, correspondingly. The origin of

this current can be understood if to consider the out-of-

plane electric field component as modulating the quan-

tum well conductivity with a simultaneous driving of

electrons by the in-plane field. More recent papers by

the authors deal with PGE in the classical parabolic

potential well with inhomogeneous vertical distribution

of impurities [7] and the double quantum well [8].

1)e-mail: entin@isp.nsc.ru

Recently, this effect has been experimentally studied

in relation to the electron gas over the helium surface

[9] in the presence of a magnetic field. The electron gas

over the liquid helium surface (EGLH) has remained

a popular 2D system since 1970th, when the first pa-

pers about this system appeared (see, e.g., [10]). The

advantage of this system is the possibility to realize the

conducting medium with a very low electron concen-

tration, < 106 cm−2, which is much lower than that in

a solid state system. The absence of impurity scatter-

ing provides a very large electron mobility as compared

to solid systems. At the same time, EGLH possesses

the electron-ripplon scattering mechanism that differs

EGLH from solid systems.

The purpose of the present paper is the theoret-

ical study of the PGE in quantum gas over the he-

lium surface without magnetic field. The system un-

der consideration is depicted in Fig. 1. Electrons are

attracted to the liquid helium via electrostatic polar-

ization, but they can not enter inside helium due to

the barrier. The polarization attraction of electrons to

liquid helium leads to the appearance of 2D electron

subbands. Thermal electrons occupy the bottom of the

lower subband. In a quantum well the vertical compo-

nent of alternating electric field can cause the transi-

tions between different quantum subbands. In the pres-

ence of scattering the alternating electric field gives

birth to the effective pumping of the in-plane momen-

tum to the electronic system. The microwave field plays

the role of the energy and asymmetry source, while
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Fig. 1. (a) – The sketch of transitions. Equilibrium elec-

trons occupy the temperature layer at the bottom of the

first subband. Electrons experience indirect phototransi-

tions from the first subband to empty states of the first or

second subband (empty arrows) with the participation of

ripplons. The amplitudes of ripplon and optical transitions

are depicted by dashed and dotted line, correspondingly.

The excitation is a result of interference of optical (vertical

dotted lines) and ripplon (tilted dashed lines) transition

amplitudes. (b) – A sketch of the proposed experiment.

Tilted alternating electric field causes the stationary cur-

rent in the electron gas over the helium surface

the scatterers produce in-plane acceleration of elec-

trons.

The indirect photoexcitation is a two-stage process

with the participation of the intermediate state. The

resonance behavior of the indirect transition probability

manifests itself when the photon energy approaches to

the distance between subbands. Parallelism of 2D sub-

bands leads to the independence of this resonance from

the electron momentum and, hence, to the similar reso-

nance in the overall stationary current.

To understand the effect in more details, let us dis-

cuss the problem of classical electrons confined by a well

and affected by a tilted uniform weak alternating elec-

tric field and the friction force strongly decreasing with

the distance to the surface [7] (this is the case of the

electron-ripplon interaction which will be assumed be-

low). Well self-frequency ω0 corresponds to the inter-

subband distance of the quantum case.

An electron vibrates or circulates in response to

the external electric field. If the external field is weak

and circular-polarized, the rotation occurs in out-of-

resonance with ω0 and in the exact resonance when the

field is linear polarized. The inhomogeneous friction con-

verts the rotation into a progressive motion, while it

does not do that with the vibration. Hence, the station-

ary photocurrent in the linear-polarized microwave field

should occur in exact resonance conditions while the re-

sponse to the circular polarization changes its sign near

the resonance frequency.

The problem formulation. We study electrons

confined by the image forces near the helium surface.

The electron states are described by a 2D momen-

tum along the surface, p = (px, py), and the discreet

quantum number n corresponding to the motion in z-

direction. The transversal quantized states of electron

χn(z) are hydrogen-like. Energies ǫn,p and wave func-

tions ψn,p(r, z) of electron states are

ǫn,p =
p2

2m
+ εn, εn = −εB/n2, (2)

ψn,p(r, z) =
1√
S
χn(z) exp(ipr); (3)

χ1(z) =
2z

a
3/2
B

e−z/aB ,

χ2(z) =
z√

2aBaB

(1− z/2aB)e
−z/2aB , (4)

where εB = 1/2ma2
B

and aB = κ/me2 are the effective

Bohr energy and Bohr radius, m is the electron mass,

κ = 4κ1(κ1+κ2)/(κ2−κ1), κ1, κ2 are the dielectric con-

stants of gaseous and liquid helium, correspondingly, S

is the system area (we set ~ = 1). The non-diagonal ma-

trix element of the transversal coordinate z, which will

be required below, is z12 = −32aB

√
2/81.

We will consider the photogalvanic effect at the fre-

quency close to the intersubband distance ∆ = ε2−ε1 =
= 3/8ma2

B
= 3εB/4. In this case only states 1 and 2 are

actual.

The estimates show that the main scattering mecha-

nism is the electron-ripplon scattering. The ripplons are

surface-tension-controlled vibrations of the helium sur-

face [10]. In our case, the energy of emitted/absorbed

ripplons is much lower than the electron energy. Re-

ally, let us consider the kinematics of the ripplon emis-

sion/absorption process: ǫn,p = ǫn′,p′ ± ωq. A typical

ripplon wave vector has the order of the thermal electron

wave vector. Then ωq/T ≪ 1. As a result, the process

is quasi-elastic. At electron density 106 cm−2 character-

istic for the experiment with liquid helium [9] and tem-

perature T ∼ 0.1K, the electron gas is non-degenerate

and the ripplon energy is much less than T . In this case

the ripplons produce static fluctuation potential. That

means possibility to use approach of [8] valid for the

impurity scattering.

Assuming that the mean free time is large, as com-

pared to the distance between the levels of quantum

wells (and also temperature), one can treat n and p

as good quantum numbers and describe the problem

within the kinetic equation for distribution functions

fn,p. In such an equation, external classical alternating

electric field E(t) causes the transition between unper-

tubed states and determines the generation term in the

kinetic equation.

Письма в ЖЭТФ том 98 вып. 11 – 12 2013



Photogalvanic current in electron gas over a liquid helium surface 921

The kinetic equation for the first stationary correc-

tion f
(1)
n,p to equilibrium distribution function f

(0)
n,p reads

∑

n′,p′

(Wn′,p′;n,pf
(1)
n′,p′ −Wn,p;n′,p′f (1)

n,p) +Gn,p = 0. (5)

The first term in kinetic equation (5) corresponds to the

relaxation due to the electron-ripplon scattering with

transition probability Wn,p;n′,p′ . The generation due to

a combined action of the external electric field and the

scattering is represented by term Gn,p. Just this com-

bined action causes the pumping of in-plane momentum

to the system, which is necessary for the in-plain cur-

rent. This term is quadratic in the electric field.

Note that the classical kinetic equation (5) neglects

the off-diagonal elements of the density matrix. This as-

sumption is valid if the subbands collision broadening is

less than the distance between them.

Generation Gn,p is given by

Gn,p =
∑

n′,p′

wn,p;n′,p′(f
(0)
n′,p′ − f (0)

n,p), (6)

where wn,p;n′,p′ is the transition probability with the

accounting for the microwave electric field and electron-

ripplon interaction, f
(0)
n,p is the equilibrium distribution

function. Then wn,p;n′,p′ is determined by the second or-

der perturbation term which includes the Hamiltonians

of electron interaction with electromagnetic field Hph

and electron-ripplon interaction He−r. Operator Hph is

Hph = −
e

ω
Im
(

Ee−iωt
)

v ≡
1

2
(Ue−iωt + h.c.), (7)

where v = (p/m, vz) is the velocity operator. Opera-

tor U can be presented in the form: U = ie(pE‖/m +

+ vzEz)/ω.

Free ripplons are described by the Hamiltonian

Hr =
∑

q

ωqb
+
q
bq, (8)

where b+
q
, bq are the ripplon creation and destruction

operators. The interaction of a single electron with rip-

plons is given by (see [10])

Her = S−1/2
∑

q

(b+−q
+ bq)e

iqrVq(z), (9)

where in our case of prevailing image forces and infinite

helium layer (see, e.g., [10])

Vq(z) =
1

ma3
B

√

q

2ρωq
V̄q(z), V̄q(z) =

a2
B

z2
[1− qzK1(qz)].

(10)

Expressions describing the resonance PGE obtained

in [8] can be adapted for the case of electron-ripplon in-

teraction considered here. Taking the quasielasticity of

the electron-ripplon scattering into account, the proba-

bility satisfies the relation of reversibility Wn′,p′;n,p =

=Wn,p;n′,p′ . In this case we get

Wn,p;n′,p′ =
2π

S
(2N|p′−p| + 1)×

× [(V|p′−p|)n,n′ ]2δ(ǫn,p − ǫn′,p′), (11)

where (Vq)nn′ =
∫∞

0 dzχn(z)χn′(z)Vq(z), Nq =

= 1/[exp (ωq/T ) − 1] is the Bose–Einstein distribu-

tion function, ωq =
√

σ0q3/ρ is the frequency of rip-

plon (gravitational part of the ripplon dispersion is ne-

glected), ρ is the liquid helium density, σ0 is the helium

surface tension coefficient.

The excitation probability including the electron-

ripplon scattering is determined by the second-order

transition amplitude. The needed term arises from the

interference of amplitudes caused by the Ez and E||.

The draft of the transitions is depicted in Fig. 1.

In the second interaction order, for the transition

probability, one can obtain

wn,p;n′,p′ =
π

2S
(2N|p′−p| + 1)×

×

[

δ(ǫn,p − ǫn′,p′ + ω)×

×

∣

∣

∣

∣

∣

∑

n1

[

(V|p−p′|)n,n1
U+
n1,p′;n′,p′

ηi(εn1,n′ + ω)
+

+
U+
n,p;n1,p(V|p−p′|)n1,n′

η + i(εn1,n − ω)

]
∣

∣

∣

∣

∣

2

+

+ δ(ǫn,p − ǫn′,p′ − ω)×

×

∣

∣

∣

∣

∣

∑

n1

[

(V|p−p′|)n,n1
Un1,p′;n′,p′

η + i(εn1,n′ − ω)
+

+
Un,p;n1,p(V|p−p′|)n1,n′

η + i(εn1,n + ω)

]
∣

∣

∣

∣

∣

2]

; η = +0. (12)

Here εn,n′ ≡ εn − εn′ . The denominators in Eq. (12)

have their resonance with the field frequency indepen-

dently from the electron momentum. At the same time,

the resonance in the final state is absent due to non-

conservation of the in-plane momentum.

The stationary current density is given by

j =
2e

S

∑

n,p

p

m
f (1)
n,p. (13)

Photocurrent. According to Eq. (13) the PGE cur-

rent is determined by the first angular harmonic of the
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distribution function f
(1)
n,p. The system of kinetic equa-

tion (5) can be presented in the algebraic form:

1

τn(ǫ)
An(ǫ)−

1

τn,n̄(ǫ)
An̄(ǫ) = Bn(ǫ), (14)

where

An(ǫ) =
〈2p

p2
f (1)
n,p

〉

, Bn(ǫ) =
〈2p

p2
Gn,p

〉

. (15)

Here

〈

. . .
〉

=
1

2π

∫ 2π

0

dφ(. . .),

φ is the electron momentum angle, p =
√

2m(ǫ− εn), a

line bar over n means: n̄ = 2 if n = 1 and vice versa.

Using Eq. (11) one can find for the relaxation times

introduced in Eq. (14):

1

τn(ǫ)
=

4πT

S

〈

∑

q

1

ωq

{

(Vq)
2
nnδ(ǫ− ǫn,p+q)×

×
[

−
qp

p2

]

+ (Vq)
2
nn̄δ(ǫ − ǫn̄,p+q)

}〉

, (16)

1

τn,n̄(ǫ)
=

4πT

S

〈

∑

q

1

ωq
(Vq)

2
nn̄δ(ǫ− ǫn̄,p+q)×

×
(

1 +
qp

p2

)〉

. (17)

The PGE current is determined by the odd part of

transition probability wn,p;n′,p′ (denoted by tilde):

w̃n,p;n,p′ =

=
2πTe2

Smω3
Re

(

(V|p′−p|)n,n(V|p′−p|)n,n̄

ω|p′−p|
×

×

{

[(p′−p)E∗
‖]

[

vzn,n̄Ez

iη+(εn̄,n+ω)
+

vzn̄,nEz

iη+(εn̄,n−ω)

]

×

× δ(ǫn,p − ǫn,p′ + ω)−

−[(p′−p)E‖]

[

vzn,n̄E
∗
z

iη+(εn̄,n−ω)
+

vzn̄,nE
∗
z

iη+(εn̄,n+ω)

]

×

× δ(ǫn,p − ǫn,p′ − ω)

})

; (18)

w̃n,p;n̄,p′ =

=
2πTe2

Smω3
Re

(

(V|p′−p|)n,n̄

ω|p′−p|
×

×

{

[(p′ − p)E∗
‖]

[

(V|p′−p|)n,nv
z
n̄,nEz

iη + (εn,n̄ + ω)
+

+
(V|p′−p|)n̄,n̄v

z
n̄,nEz

iη + (εn̄,n − ω)

]

δ(ǫn,p − ǫn̄,p′ + ω)−

− [(p′ − p)E‖]

[

(V|p′−p|)n,nv
z
n̄,nE

∗
z

iη + (εn,n̄ − ω)
+

+
(V|p′−p|)n̄,n̄v

z
n̄,nE

∗
z

iη + (εn̄,n + ω)

]

δ(ǫn,p − ǫn̄,p′ − ω)

})

. (19)

From Eq. (13) it follows:

j =
e

mS

∑

n,p

An(ǫn,p)p
2 =

em

π

∫ ∞

εn

(ǫ− εn)An(ǫ)dǫ.

(20)

Solving the system of Eq. (14) we find for An at ǫ > ε2:

An(ǫ) =
τn(ǫ)[Bn(ǫ) + τn̄(ǫ)τn,n̄(ǫ)

−1Bn̄(ǫ)]

1− τ1(ǫ)τ2(ǫ)τ1,2(ǫ)−1τ2,1(ǫ)−1
. (21)

In the region ε1 < ǫ < ε2

A2(ǫ) = 0, A1(ǫ) = τ1(ǫ)B1(ǫ). (22)

Using Eq. (15) and Eqs. (6), (18), (19) we obtain in the

resonance (ω ≃ ∆) approximation:

Bn(ǫ)=2cRe(E∗
‖Ez)fs(δ)sn(ǫ)+2c Im(E∗

‖Ez)fa(δ)an(ǫ),

fs(δ) =
η

η2 + δ2
, fa(δ) =

δ

η2 + δ2
, (23)

sn(ǫ) =
9π2σ0∆

16mω3S
e−(ǫ−ε1)/T

〈

∑

q

(qp)(Vq)1,2
p2ωq

×

×

{

(Vq)n,n

[

δ(ǫ− ǫn,p+q + ω)(e−ω/T − 1) +

+ δ(ǫ − ǫn,p+q − ω)(eω/T − 1)
]

− (−1)n ×

×
[

(Vq)1,1 + (Vq)2,2

]

×

× δ[ǫn,p − ǫn̄,p+q − (−1)nω]×

× (e(−1)nω/T − 1)

}

〉

, (24)
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an(ǫ) =

=
9π2σ0∆

16mω3S
(−1)ne−(ǫ−ε1)/T

〈

∑

q

(qp)(Vq)1,2
p2ωq

×

×

{

(Vq)n,n

[

δ(ǫ − ǫn,p+q + ω)(e−ω/T − 1)−

−δ(ǫ−ǫn,p+q−ω)(eω/T − 1)
]

−(e(−1)nω/T − 1)×

×
[

(Vq)1,1 − (Vq)2,2

]

δ[ǫ− ǫn̄,p+q − (−1)nω]

}

〉

, (25)

where p =
√

2m(ǫ− εn), n = 1, 2, c =

= 16nse
2z12/(9mσ0), δ = ∆ − ω is the resonance

detuning. After angular integration we find

(

s1

a1

)

= ∓
e−βw

w + 1
(e−β/4 − e−β)

∫ ∞

0

dy

y
R3(y)×

×

(

R1(y)
{

(3 − 4y2)
ϑ[64(w+1)y2−(3−4y2)2]
√

64(w+1)y2−(3−4y2)2
e−3β/4±

± (3 + 4y2)
ϑ[64(w + 1)y2 − (3 + 4y2)2]
√

64(w + 1)y2 − (3 + 4y2)2

}

−

−
[

±R1(y)+R2(y)
]

y
ϑ[4(w+1)−y2]
√

4(w+1)−y2
e−3β/4

)

, (26)

(

s2

a2

)

= −
e−βw

w + 1/4
(e−β/4 − e−β)

∫ ∞

0

dy

y
R3(y)×

×

{

R2(y)(3−4y2)
ϑ[64(w+1/4)y2−(3−4y2)2]
√

64(w+1/4)y2−(3−4y2)2
e−3β/4+

+
[

R1(y)±R2(y)
]

y
ϑ(4w + 1− y2)
√

4w + 1− y2

}

, (27)

where w = 2ma2
B
ǫ, ϑ(t) is the Heaviside function,

R1(y) = (V̄q)11, R2(y) = (V̄q)22, R3(y) = (V̄q)12,

β = (2ma2
B
T )−1, y = qaB.

For relaxation times, Eqs. (16), (17) yield:

1

τ1
=

1

τ0

∫ ∞

0

dy

y

{

[R1(y)]
2 yϑ[4(w + 1)− y2]

(w + 1)
√

4(w + 1)− y2
+

+ [R3(y)]
2 8ϑ[64(w + 1)y2 − (3 + 4y2)2]
√

64(w + 1)y2 − [(3 + 4y2)]2

}

, (28)

1

τ1,2
=

1

τ0

∫ ∞

0

dy

y
[R3(y)]

2
[

1−
(3 + 4y2)

8(w + 1)

]

×

×
8ϑ[64(w + 1)y2 − (3 + 4y2)2]
√

64(w + 1)y2 − [(3 + 4y2)]2
, (29)

1

τ2
=

1

τ0

∫ ∞

0

dy

y

R2
2(y)

w + 1/4

{

yϑ[4(w + 1/4)− y2]
√

4(w + 1/4)− y2
+

+R2
3(y)

8ϑ[64(w + 1/4)y2 − (3 − 4y2)2]
√

64(w + 1/4)y2 − [(3 − 4y2)]2

}

, (30)

1

τ2,1
=

1

τ0

∫ ∞

0

dy

y
R2

3(y)
[

1 +
3− 4y2

8(w + 1/4)

]

×

×
8ϑ[64(w + 1/4)y2 − (3− 4y2)2]
√

64(w + 1/4)y2 − [(3 − 4y2)]2
, (31)

where τ0 = πma4
B
σ0/T. For functions Rk(y) (k = 1, 2, 3)

we have

R1(y) =
2y2
[

(y2 − 4)1/2 − 2 arccos(2/y)
]

(y2 − 4)3/2
,

R2(y) = y2 ×

×

[

(y2−1)1/2(7+6y2+2y4)−(4+7y2+4y4) arccos(1/y)
]

8(y2 − 1)7/2
,

R3(y)=
16y2

{

(4y2−9)1/2(9+8y2)−36y2 arccos[3/(2y)]
}

9
√
2(4y2 − 9)5/2

.

Finally, from Eqs. (20)–(25), one can write the ex-

pressions for photogalvanic coefficients:
(

αs

αa

)

= −b

(

fs(δ) Λs

fa(δ) Λa

)

, b =
27
√
2nsme

9

36πσ0κ3~5
, (32)

Λs =

∞
∫

−1/4

dw

τ1,2τ2,1 − τ1τ2

{

(w + 1)τ1τ2,1 ×

×
[

s1τ1,2 + s2τ2

]

+

+

(

w +
1

4

)

τ2τ1,2

[

s2τ2,1 + s1τ1

]

)

+

+

−1/4
∫

−1

dw(w + 1)s1τ1, (33)

Λa =

∞
∫

−1/4

dw

τ1,2τ2,1 − τ1τ2

{

(w + 1)τ1τ2,1 ×

×
[

a1τ1,2 + a2τ2

]

+

+

(

w +
1

4

)

τ2τ1,2

[

a2τ2,1 + a1τ1

]

)

+

+

−1/4
∫

−1

dw(w + 1)a1τ1. (34)
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We restored ~ in (32). Functions fs,a(δ) give the pho-

togalvanic coefficients frequency dependence. Detuning

δ and width η are measured in the inverse time, pa-

rameters Λs,a have dimensionality of time. Parameter

b for He4 has a numerical value of b = −1.486 ×
× 1023 cm3/2g−1/2s−2.

Eqs. (32)–(34) give the main result of the paper. Nat-

urally, infinitely small quantity η should be replaced by

a finite scattering rate (see below).

Discussion and conclusions. According to Eqs.

(32), the photogalvanic effect resonantly depends on res-

onance detuning δ. PGE coefficient αs has a symmetric

resonance and αa has an antisymmetric resonance as a

function of δ. The maximum value of fs(δ) at δ = 0 is

twice as big as the maximum of fa(δ) at δ = η. This be-

havior is similar to the PGE in semiconductor quantum

wells. The resonance originates from the intermediate

state of indirect transitions due to the parallelism of

subbands, rather than the resonance of direct intersub-

band optical transitions caused by conservation laws in

the final states.

The finite value of η is produced by the same scat-

tering processes as these giving rise to the PGE. Ac-

cording to Eqs. (33), (34) and Eqs. (26), (27), two char-

acteristic groups of electrons are involved in the PGE,

namely, the thermal electrons in the first subband with

ǫ ∼ T and the photoexcited electrons with ǫ −∆ ∼ T .

The finite subband width is determined by the interme-

diate optical excitation process. Hence, the reasonable

approximation for η is the sum of their scattering rates

η ≈≪ 1/τ1 ≫ + ≪ 1/τ2 ≫ (in the last expression the

averaging denoted by ≪ ... ≫ should be done with the

thermal distribution near the bands of the first and the

second subbands, correspondingly).

The dependence of τ1 and τ2 on the energy at the

conditions of the experiment [9], nS = 1.7 · 106 cm−2,

T = 0.1K, is represented in Fig. 2. The scattering be-

comes essentially weaker near threshold energies. Inter-

subband transition rates 1/τ1,2, 1/τ2,1 prove to be very

weak, as compared with intrasubband rates 1/τ1, 1/τ2.

The temperature dependences of the width η and the

photogalvanic coefficients are depicted in Fig. 3 and 4.

The strength of PGE is determined by αs and αa. At

T = 0.1K αs(δ = 0) = 1.57 · 10−10 A·cm/V2. This

value is in reasonable accordance with the experimental

value [9] (obtained, however, in the presence of mag-

netic field). The PGE coefficients achieve the maxi-

mal values at temperature T ≈ 0.3K: αs(δ = 0) =

4.33 · 10−9 A·cm/V2, αa(δ = η) = 1.33 · 10−9 A·cm/V2

which are essentially larger than the corresponding val-

ues for T ∼ 0.1K. The ratio of linear to circular PGE

coefficients maxima is 3.2.

Fig. 2. Mean free times τ1 and τ2 versus the electron en-

ergy at T = 1K. The vertical line marks the position of

the second subband

Fig. 3. Temperature dependence of the resonance width η

Fig. 4. Temperature dependence of frequency maxima of

PGE coefficients αs at δ = 0 and αa at δ = η
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It should be emphasized that large momentum trans-

fer to ripplons in optical transition amplitude 1 → 2

enhances the transition process (and PGE coefficients).

At the same time, the strong scattering increases the

width of resonance η that suppresses the optical tran-

sitions. The photogalvanic coefficients extrema in Fig. 4

originate from the concurrence of these factors.

In conclusion, we have found the value of photocur-

rent along the charged helium surface caused by tilted

alternating electric field. The current contains two com-

ponents representing responses to linear and circular po-

larization. The linear photogalvanic current has delta-

like resonance and the circular photocurrent has anti-

symmetric resonance near the intersubband transitions

frequency. The ripplon scattering mechanism was taken

into account. The current value is consistent with that

observed in the experiment.

Authors are grateful to A. Chepelyanskii for attrac-

tion our attention to the paper [9]. This research was

supported by RFBR grant # 11-02-00060, 11-02-00730.

1. L. I. Magarill and M. V. Entin, Fiz. Tverd. Tela
(Leningrad) 21, 1280 (1979) [Sov. Phys. Sol. State 21,
743 (1979)].

2. L. I. Magarill and M.V. Entin, Poverkhnost’. Fizika,
Khimiya, Mekhanika 1, 74 (1982).

3. S.A. Tarasenko, Phys. Rev. B 83, 035313 (2011).

4. V.L. Al’perovich, V. I. Belinicher, V.N. Novikov, and
A.S. Terekhov, ZhETF 80, 2298 (1981) [Sov. Phys.
JETP 53, 1201 (1981)].

5. G.M. Gusev, Z.D. Kvon, L. I. Magarill, A.M. Palkin,
V. I. Sozinov, O.A. Shegai, and V.M. Entin, JETP Lett.
46, 33 (1987).

6. L. I. Magarill and V.M. Entin, Sov. Phys. Solid State
31, 1299 (1989).

7. V.M. Entin and L. I. Magarill, Pis’ma v ZhETP 97, 737
(2013) [JETP Lett. 97, 639 (2013)].

8. V.M. Entin and L. I. Magarill, Pis’ma v ZhETP 98, 43
(2013) [JETP Lett., 98, (2013)].

9. D. Konstantinov, A. Chepelyanskii, and K. Kono, J.
Phys. Soc. Japan 81, 093601 (2012).

10. V.B. Shikin and Yu.P. Monarkha, J. Low Temp. Phys.
16, 193 (1974); Yu.P. Monarkha and V.B. Shikin,
Fizika Nizkikh Temperatur 8, 563 (1982).

Письма в ЖЭТФ том 98 вып. 11 – 12 2013


