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Magnetic moments of S11(1535) and S11(1650) baryons are studied in the framework of the relativistic

three-quark Hamiltonian derived in the Field Correlation Method. The baryon magnetic moments are ex-

pressed via the average current quark energies which are defined by the fundamental QCD parameters: the

string tension σ, the quark masses, and the strong coupling constant αs. Resulting magnetic moments for the

JP = 1/2− nucleons are compared both to model calculations and to those from lattice QCD.
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1. Introduction. The dipole magnetic moment en-

codes information about the leading-order response of a

bound system to a soft external magnetic field. In par-

ticular, baryon magnetic moments are dynamical char-

acteristics which provide valuable insights into baryon

internal structure in terms of quark and gluon de-

grees of freedom. In this paper we shall explore the

magnetic moments of negative parity resonances em-

ploying the QCD dynamics of a baryon in the form

of the three-quark Effective Hamiltonian (EH). The

EH is derived from the QCD path integral (see, e.g.,

[1]), and was already used in the studies of baryon

spectra without external fields [2–5]. (The extension

of the EH to the case of external magnetic field has

been done recently in Ref. [6], where the nucleon spec-

trum as a function of magnetic field was calculated.)

Within this method the magnetic moments of the 1/2+

octet baryons have been studied analytically in Ref. [7].

The model was shown to agree with experiment within

10% accuracy. The same accuracy was achieved for the

baryon magnetic moments in Ref. [8], where the QCD

string dynamics was investigated from another point of

view.

Negative parity partners of the baryon octet arise

from excitation of one unit of orbital angular momen-

tum. Although the magnetic moments of the 1/2+

baryon octet are well-known both experimentally and

theoretically, little is known about their 1/2− coun-

terparts. Experimentally, magnetic moments of these

states can be extracted through bremsstrahlung pro-

cesses in photo- and electro-production of mesons at

intermediate energies. For N(1535) a similar process

1)e-mail: trusov@itep.ru

γp → γηp can be used [9], but to date no such mea-

surements have been made.

There exist limited number of theoretical studies

of the magnetic moments of negative parity baryons

based on constituent quark model [9], unitarized chi-

ral perturbation theory (UχPT) [10], chiral constituent

quark model (χCQM) [11], Bethe–Salpeter approach

[12], and on the lattice [13] where magnetic moments

of the baryon resonances have been obtained from the

mass shifts. Comparison study of magnetic moments for

positive- and negative-parity states offers insight into

underlying quark-gluon dynamics. Given that the mass

spectrum of the 1/2+ and 1/2− states has been rea-

sonably well established from the EH, it is instructive

to investigate the magnetic moments of these states. In

this paper we extend the results of Ref. [7] to calculate

the magnetic moments of the negative parity S11(1535)

and S11(1650) resonances. The paper builds on the pre-

vious work presented in Ref. [4] where the EH contains

the three quark string junction confined interaction and

the Coulomb potential with the fixed strong coupling

constant.

In Section 2 we briefly discuss the theoretical formal-

ism of EH method for baryons, including the techniques

required to extract the average quark energies ωi which

are cornerstones of the present calculation. As a result

one obtains the resonance magnetic moments without

introduction of any fitting parameters. Details of cal-

culation of the magnetic moments for excited 1/2− nu-

cleons are given in Section 4. In this Section, we also

report the magnetic moments of the 1/2+ and 3/2+

octet baryons. Section 5 contains the summary of the

obtained results.
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2. Effective Hamiltonian for Baryons. The key

ingredient of the EH method is the use of the auxil-

iary fields (AF) initially introduced in order to get rid

of the square roots appearing in the relativistic Hamil-

tonian [14]. Using the AF formalism allows one to de-

rive a simple local form of the EH for the three-quark

system which comprises both confinement and relativis-

tic effects, and contains only universal parameters: the

string tension σ, the strong coupling constant αs, and

the bare (current) quark massesmi. Neglecting the spin-

dependent forces responsible for the fine and hyperfine

splittings of baryon states the EH has the form

H =
3
∑

i=1

(

m2
i

2ωi
+
ωi

2

)

+H0 + V. (1)

In Eq. (1) H0 is the nonrelativistic kinetic energy oper-

ator for the constant AF ωi, the spin-independent po-

tential V is the sum of the string potential

VY (r1, r2, r3) = σ rmin, (2)

with rmin being the minimal string length corresponding

to the Y -shaped configuration, and a Coulomb interac-

tion term

VC(r1, r2, r3) = −CF

∑

i<j

αs

rij
, (3)

arising from the one-gluon exchange. In Eq. (3) CF =

= 2/3 is the color factor. The constant αs was treated

either as a fixed parameter, αs = 0.39 [4] or as the run-

ning coupling constant with the freezing value ∼ 0.5

[5]. The results for ωi coincide with the accuracy bet-

ter than 1% (compare Tables 1 and 2 of Refs. [4] and

[5], respectively). In what follows we use ωi taken from

Ref. [4].

3. The auxiliary field formalism. The EH de-

pends explicitly on both bare quark masses mi and the

constants AF ωi that finally acquire the meaning of the

dynamical quark masses. These quantities with a good

accuracy coincide the average kinetic energies of the

current quarks
〈

√

pi +m2
i

〉

[4]. As the first step the

eigenvalue problem is solved for each set of ωi; then one

has to minimize 〈H〉 with respect to ωi. Although being

formally simpler the EH is equivalent to the relativistic

Hamiltonian up to elimination of AF.

The formalism allows for a very transparent inter-

pretation of AF ωi: starting from bare quark masses mi,

we arrive at the dynamical masses ωi that appear due

to the interaction and can be treated as the dynamical

masses of constituent quarks. These have obvious quark

model analogs, but are derived directly using the AF

formalism. Due to confinement ωi ∼ √
σ ∼ 400 MeV

or higher, even for the massless current quarks.

The baryon mass is given by

MB = M0 + C + ∆M string, (4)

M0 =
3
∑

a=1

(

m2
a

2ωa
+
ωa

2

)

+ E0(ωa), (5)

where E0(ωa) is an eigenvalue of the Schrödinger oper-

ator H0 + V , and the ωa are defined by minimization

condition
∂ M0(ma, ωa)

∂ ωa
= 0. (6)

The right-hand side of Eq. (4) contains the perturbative

quark self-energy correction C that is created by the

color magnetic moment of a quark propagating through

the vacuum background field [15]. This correction adds

an overall negative constant to the hadron masses. Fi-

nally, ∆Mstring in Eq. (4) is the correction to the string

junction three-quark potential in a baryon due to the

proper moment of inertia of the QCD string [16]. We

stress that both corrections, C and ∆Mstring are added

perturbatively and do not influence the definition of ωa.

The confinement Hamiltonian contains three pa-

rameters: the current quark masses mn and ms and

the string tension σ. Let us underline that they are

not the fitting parameters. In our calculations we used

σ = 0.15GeV2 found in the SU(3) QCD lattice simula-

tions [17]. We employed the current light quark masses

mu = md = 9MeV and the bare strange quark mass

ms = 175MeV.

4. Magnetic moments of S11(1535) and

S11(1650) resonances. To calculate the nucleon mag-

netic moment one introduces a vector potential A and

calculate the energy shift ∆MB due the Hamiltonian

H = H(A) + Hσ where H is defined by Eq. (1) with

the substitution pa → pa − eaAa and

Hσ = −
∑

a

ea σa

2ωa
B, (7)

where B is an external magnetic field. The magnetic

moment operator consists of contributions from both in-

trinsic spins of the constituent quarks that make up the

bound state µS and angular momentum of the three-

quark system µL with the center of mass motion re-

moved. Straightforward calculation using the London

gauge A = 1
2 (B× r) yields

µ̂ = µ̂S + µ̂L. (8)
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Taking the constituent quarks to be Dirac point par-

ticles the spin contribution in Eq. (8) is determined by

the effective quark masses ωa

µS =
∑

a

eaσa

2ωa
. (9)

The orbital contribution in Eq. (8) reads

µ̂L =
∑

a

ea
2ωa

ra × pa. (10)

In what follows instead the usual prescription which

is to symmetrize the nucleon wave function between all

three quarks we symmetrize only between equal-charge

(up or down) quarks. In other words for the proton we

use the uud basis in which the d quark is singled out as

quark 3 but in which the quarks uu are still antisym-

metrized. In the same way, for the neutron we use the

basis in which the u quark is singled out as quark 3. The

uud basis state diagonalizes the confinement problem

with eigenfunctions that correspond to separate excita-

tions of the quark 3 (ρ and λ excitations, respectively).

In particular, excitation of the λ variable unlike excita-

tion in ρ involves the excitation of the “odd” quark (d

for uud or u for ddu). The physical P -wave states are

not pure ρ or λ excitations but linear combinations of

all states with a given total momentum J . Most physi-

cal states are, however, close to pure ρ or λ states [18].

In terms of the Jacobi variables

ρ =
r1 − r2√

2
λ =

r1 + r2 − 2r3√
6

. (11)

Eq. (10), reads

µL =
1

2
(µ1 + µ2)lρ +

1

6
(µ1 + µ2 + 4µ3)lλ +

+
µ1 − µ2

2
√
3

(ρ× pλ + λ× pρ), (12)

where

lρ = ρ× pρ, lλ = λ× pλ (13)

and where the quark magnetic moments µu, µd are ex-

pressed in terms of parameters ωa

µa =
ea
2ωa

. (14)

Recall that the quantities ωa are defined from the eigen-

values M(ω1, ω2, ω3) of the EH H using the stationary

point Eqs. (6).

Note also that the magnetic moments in Eq. (14) are

in quark natural magnetons. To convert it into nuclear

magnetons µN , we need to scale the results by the factor

mN = 0.94GeV.

The angular operators in (12) act on spacial wave

functions ψρ,λ
1m as follows

lρzψ
ρ
1m = mψρ

1m, lρzψ
λ
1m = 0,

lλzψ
λ
1m = mψρ

1m, lλzψ
ρ
1m = 0,

(ρ× pλ)zψ
λ
1m = mψρ

1m, (ρ× pλ)zψ
ρ
1m = 0,

(λ× pρ)zψ
ρ
1m = mψλ

1m, (λ× pρ)zψ
λ
1m = 0.

(15)

The contribution of the last term in (12) vanishes for

the pure ρ- and λ-excitations.

By definition, the magnetic moment µ of the baryon

with the spin J is the expectation value of the operator

µ̂z for the state with Mz = J

µ = 〈µ̂z〉 = 〈JJ |µ̂z
S + µ̂z

L|JJ〉. (16)

In particular, for baryons with the total orbital momen-

tum L = 0 where L – the angular momentum of the

three-quark system with the correct center of mass mo-

tion removed

µ = µ
1/2
spin =

〈

1

2

+ 1

2
|
∑

a

ea σaz
2ωi

| 1
2

+ 1

2

〉

=

=

〈

χλ
1/2 1/2(12; 3) |

∑ ea
2ωa

|χλ
1/2 1/2(12; 3)

〉

=

=
1

3
(2µ1 + 2µ2)−

1

3
µ3, (17)

where χλ
1/2 1/2 is the doublet spin function symmetric

under interchange 1⇆ 2. Eq. (17) is standard result of

the additive quark model for the 1/2+ baryons [19].

Table 1

The values of ωa for the L = 0, 1 baryons

Baryon L Excitation ω1 ω3

nnn 0 408 408

1 ρ, λ 457 457

nns 0 414 453

1 ρ 482 459

1 λ 441 534

ssn 0 458 419

1 ρ 520 424

1 λ 483 506

In Table 1 we show the einbein parameters ωq and

ωs calculated for the different L = 0 baryons in Ref.

[4] using the constant value of αs = 0.39. The sym-

bol “q” denotes the light quarks u or d. We use the

notation ω1 = ω2 = ωq, ω3 = ωs for the qqq and

qqs baryons and ω1 = ω2 = ωs, ω3 = ωq for the ssq
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Table 2

Magnetic moments of JP = (1/2)+ baryons. Quark masses are from [4]

Baryon ωq ωs µu µd µs µ Expt.

p 0.408 1.53 −0.77 2.29 2.79

n 0.408 1.53 −0.77 −1.53 −1.91

Λ 0.414 0.453 1.51 −0.76 −0.69 −0.69 −0.61

Σ+ 0.414 0.453 1.51 −0.76 −0.69 2.23 2.46

Σ0 0.414 0.453 1.51 −0.76 −0.69 0.80 0.83

Σ− 0.414 0.453 1.51 −0.76 −0.69 -0.91 −1.16

Ξ0 0.419 0.458 1.485 −0.742 −0.75 −1.40 −1.25

Ξ− 0.419 0.458 1.689 −0.845 −0.75 −0.50 −0.65

Ω− 0.463 −0.671 −2.01 −2.02

baryons. These parameters have been calculated for the

string tension σ = 0.15GeV and the strong coupling

constant αs = 0.39 with the values of the current light

quark masses, mu = md = 9MeV, ms = 175MeV. The

very similar values of ωa have been calculated in Ref. [5]

where instead the constant αs the running coupling con-

stant αs(r) has been used with αs(∞) ∼ 0.5.

There is no good theoretical reason why ωa need to

be the same in different mesons and baryons. However

from the results of Table 1 we conclude that einbeins

of the light quarks are increased by ∼ 10MeV when go-

ing from the nucleon to Ξ. This variation is marginal

and is within the accuracy of calculations. For ground

states of Λ and Σ hyperons we obtain ωq = 0.411MeV,

ωs = 0.451MeV that agrees with the corresponding val-

ues for the ground state of K meson [20].

The magnetic moments for the 1/2+ baryons with

L = 0 are presented in Table 2. For the 3/2+ baryons

one obtains µ∆++ = 3µu = 4.575µN , other moments

are µ∆+ = 2µu + µd = 3
2 µ∆++ , µ∆0 = 0, µ∆− =

= 3µd = − 1
2 µ∆++ . Recall that so far, only the magnetic

moment of ∆++(1232) has been studied in the reaction

π+p→ γπ+p with the result µ∆++ ∼ (3.7−7.5)µN [21].

The uncertainty in the number arises from the ambigu-

ity in the theoretical analysis of the reaction.

The wave function of an 1/2− resonance is given as

a superposition of two spin (S = 1/2 and 3/2) states

in the l = 1 70-dimensional representation of SU(6):

|S11(1535)〉 = cosϑ|2P1/2〉 − sinϑ|4P1/2〉,

|S11(1650)〉 = sinϑ|2P1/2〉+ cosϑ|4P1/2〉,

where mixing angle ϑ depends on the hyperfine spin

interaction between the quarks and the standard spec-

troscopic notations | 2S+1P1/2〉 are used to indicate the

total quark spin S = 1/2, 3/2, orbital angular momen-

tum L = 1, and total angular momentum J = 1/2. The

corresponding spin-angular functions are given by

| 2P1/2〉 =

=
1√
2

(

√

2

3
Y11(λ)χ

λ
1/2−1/2 −

√

1

3
Y10(λ)χ

λ
1/2 1/2

)

+

+
1√
2

(

√

2

3
Y11(ρ)χ

ρ
1/2−1/2 −

√

1

3
Y10(ρ)χ

ρ
1/2 1/2

)

, (18)

where χλ
1/2ms

and χρ
1/2ms

are the two spin functions

symmetric and antisymmetric under interchange 1⇆ 2,

and

| 4P1/2〉 =
√

1

2
Y1−1(λ)χ

s
3/2 3/2 −

−
√

1

3
Y10(λ)χ

s
3/2 1/2 +

√

1

6
Y11(λ)χ

s
3/2−1/2. (19)

Note that parameters ω for the 1/2− nucleons de-

pend also on the type of excitation. However, the differ-

ence is marginal and does not exceed 2%, see Table 2

of Ref. [5]. In what follows we use the common value

ω = 0.457GeV both for ρ and λ excitations.

Straightforward calculation yields (the indexes +, 0

refer to the charge of the nucleon 1/2− states)

µ(S+
11(1535)) = µ(2P+

1/2) cos
2 ϑ+ µ(4P+

1/2) sin
2 ϑ−

− 2〈2P+
1/2|µ

z
S |4P+

1/2〉 sinϑ cosϑ = 1.24µN , (20)

µ(S+
11(1650)) = µ(2P1/2)

+ sin2 ϑ+ µ(4P1/2) cos
2 ϑ+

+ 2〈2P1/2|µz
S |4P1/2〉 sinϑ cosϑ = −0.33µN , (21)

µ(S0
11(1535)) = µ(2P 0

1/2) cos
2 ϑ+ µ(4P 0

1/2) sin
2 ϑ−

− 2〈2P 0
1/2|µz

S |4P 0
1/2 > sinϑ cosϑ = −0.84µN , (22)
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Table 3

Magnetic moments of JP = 1/2− nucleons

State CQM [9] χPT [10] χCQM [11] BS [12] LQCD [13] This work

S+
11(1535) 1.894 1.1 2.085 0.37 −1.8 1.24

S0
11(1535) −1.284 −0.25 −1.57 −0.1 −1.0 −0.84

S+
11(1650) 0.11 1.85 0.12

S0
11(1650) 0.951 −0.69 0.74

µ(S0
11(1650)) = µ(2P 0

1/2) cos
2 ϑ+ µ(4P 0

1/2) sin
2 ϑ−

− 2〈2P 0
1/2|µz

S |4P 0
1/2〉 sinϑ cosϑ = 0.744µN , (23)

where

µ(2P+
1/2) =

2

9
µu +

1

9
µd = 0.23µN , (24)

µ(4P+
1/2) = µu +

1

3
µd = 1.14µN , (25)

and

〈4P+
1/2|µz|2P+

1/2〉 =
4

9
(µu − µd) = 0.91µN . (26)

Eqs. (24)–(26) are written for the positive charge res-

onances. For the neutral resonances one should inter-

chage µu and µd

µ(2P 0
1/2) =

1

9
µu +

2

9
µd = 0, (27)

µ(4P 0
1/2) =

1

3
µu + µd = −0.232µN , (28)

and

〈4P 0
1/2|µz|2P 0

1/2〉 =
4

9
(µd − µu) = − 0.926µN . (29)

Assuming a phenomenological value [22]

ϑ ∼ −π
6

we obtain the results summarized in Table 3. In this Ta-

ble we also quote the magnetic moments obtained using

different theoretical models.

5. Conclusions. To summarize, we have carried out

a calculation of the magnetic moments of the low-lying

negative parity S11(1535) and S11(1650) resonances. In

the framework of the quark model these resonances are

configuration mixtures of two SU(6) states with ex-

cited orbital wavefunctions. Calculating both the quark

spin and orbital angular momentum contribution for the

magnetic moment, the cross terms due to the configu-

ration mixing, and using the average value of the quark

kinetic energy ω = 0.457GeV obtained from the varia-

tional solution for the einbein field in the EH method we

obtain the values of magnetic moments of the S11(1535)

and S11(1650) listed in Table 3. The results differ from

the magnetic moments of the low-lying JP = 1/2− nu-

cleon calculated both in hadronic and quark models and

from lattice QCD. In particular, the lattice results are

different, even by sign. Any future measurement of the

magnetic moment would have important implications

in understanding the nature of parity partners of the

nucleon.

Finally we note that the magnetic moments of the

other 1/2− low-lying baryon resonances can similarly

be calculated using EH approach. The results will be

published elsewhere.

The authors thank Yu.A. Simonov for valuable dis-

cussions.
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