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Magnetic field focusing of hyperfine interaction in hydrogen
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We find a new correction to hyperfine splitting in the ground state of hydrogen atom in magnetic field.

The physical basis for this effect is the reduction of the size of the electron orbit in magnetic field. As a result,

the value of the wave function at the origin increases which can be called magnetic focusing. Another magnetic

field induced effect is the appearance of field dependent tensor forces.
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1. The spectrum of hydrogen atom (HA) in strong

magnetic field (MF) was found long ago [1] and is pre-

sented in textbooks [2]. In recent years we are witnessing

the rise of interest to this subject. This is probably due

to the fact that huge MF up to eB ∼ Λ2
QCD ∼ 1019 G

has become a physical reality. Such field is created (for

a short time) in heavy ion collisions at RHIC and LHC

[3]. The field about four orders of magnitude less is an-

ticipated to operate in magnetars [4]. Several interest-

ing MF induced effects in QCD are under investigation

now both from theoretical and experimantal sides [5].

Among new results in physics of HA in MF necessary

to mention the conclusion that in superstrong MF ra-

diative corrections screen the Coulomb potential thus

preventing the “fall to the center” phenomenon to occur

[6]. In the present paper we discuss another MF induced

effect, namely MF focusing of hyperfine interaction. The

HA is squeezed by MF and the value of the wave func-

tion at the origin increases. This changes the Hamil-

tonian of hyperfine interaction. In addition, in MF the

HA takes the form of an elongated ellipsoid. As a result

field dependent tensor forces are induced. Experimen-

tally magnetic focusing manifests itself as an additional

shift of hyperfine states on top of the standard Zeeman

splitting.

2. We begin by introducing the units to be used and

reminding some basic equations. We put ~ = c = 1,

α = e2 = 1/137, dimensionless MF is defined as H =

= B/Ba, Ba = m2e3 = 2.35 · 109 G is the so-called

atomic MF. At B = Ba the Bohr radius aB = (αm)−1

becomes equal to the magnetic, or Landau, radius aH =

= (eB)−1/2, the oscillator energy ω = eB/2m becomes
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equal to Rydberg energy Ry = mα2/2. In this system

of units GeV2 = 1.45 · 1019 G.

The problem of HA in uniform MF is convenient to

solve in cylindrical coordinates (ρ, z) using the London

gauge A = 1
2B×r, hence B is directed along the z-axis.

The nonrelativistic Hamiltonian reads

Ĥ = − 1

2m

(

∆⊥ +
∂2

∂z2

)

+ ωl̂z +

+
mω2ρ2

2
− α

√

ρ2 + z2
+ µBσzB, (1)

where ∆⊥ is the transverse part of the Laplacian, µB =

= e/2m, e is the absolute value of the electron charge,

σ = 2se, σz = ±1. The Schrodinger equation described

by the Hamiltonian (1) does not allow the separation

of the coordinates ρ and z. However in superstrong MF

limit H ≫ 1 the “fast” MF variable ρ and the “slow”

Coulomb variable z may be separated in the form of the

adiabatic ansatz [7, 1]:

Ψ(ρ, z) = Rnρm(ρ)χnnρm(z)χσz
. (2)

For H ≫ 1 the dominant role is played by the lowest

Landau level (LLL) with nρ = 0, m = 0,−1,−2, ...,

σz = −1. For this state the energy of the oscillations in

ρ-plane and the spin magnetic energy µBB compensate

each other. Finally we note that electron becomes rela-

tivistic for MF larger than the Schwinger one Bc = m2/e

with only one exception: electron at LLL remains non-

relativistic [6].

3. Now we come to the subject of the paper. Hyper-

fine splitting (hfs) in the ground state of HA is measured

to 13 significant figures in frequency units [8, 9]

∆Ehfs = 1420.4057517667(9)MHz, (3)

which amounts approximately to 5.9 · 10−6 eV. It cor-

responds to the 21cm line discovered in 1951 [10] and
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since then thought to be primary tool in radioastron-

omy. The hfs can be found to lowest order in α from

Breit magnetic dipole interaction

Ĥ(0)
hf =

8π

3
gpµBµN(σe · σp)δ(r), (4)

where gp = 2.79, µN = e/2mp, and the superscript sig-

nifies the absence of external MF. The first order per-

turbation of Ĥ(0)
hf gives

∆Ehfs =
32π

3
gpµBµN|Ψ(0)|2. (5)

There are three types of corrections to this expression:

a) relativistic effects, b) QED, and c) nuclear structure.

They have been thoroughly discussed in the literature

(see, e.g., [8, 9]).

With MF imposed Eqs. (4) and (5) experience im-

portant changes. The problem is considered in detail

in textbooks on quantum mechanics [2]. Our solution

contains two new points, namely magnetic focusing and

the presence of tensor forces. Both effects are caused by

the action of MF which enhances the wave function at

the origin and gives a non-spherical form to the HA.

To get the needed expression for Ĥhf we start from the

Biot–Savart law [2, 11]. The operator Ĥhf has the form

Ĥhf = −gµN(σpB
′), where B′ is the MF created at the

origin by the spin part of the electron current. For the

current one has

je = −µB∇Ψ2 × σe, (6)

where the function Ψ(ρ, z) is real and ϕ-independent

since we consider the ground state with lz = 0. Exter-

nal MF B enters via the wave function Ψ to be specified

below. Next we have

B′ =

∫

dV
n× j

r2
, (7)

n× j = −µB

[

∇Ψ2(n · σe)− σe(n · ∇Ψ2)
]

, (8)

with n being the unit vector along the line connecting

dV and the origin where proton is placed. From (7), (8)

one obtains

Ĥhf = gµBµN

[
∫

dV
(σp · ∇Ψ2)(σe · r)

r3
−

−(σe · σp)

∫

dV
(r · ∇Ψ2)

r3

]

. (9)

Integrating by parts one can easily convert (9) into the

standard form

Ĥhf = gµBµN

∫

dVΨ2

[

8π

3
(σp · σe)δ(r) +

+
3(σp · r)(σp · r)− (σp · σe)r

2

r5

]

. (10)

The form (9) does not explicitly contain the δ-function

and is therefore better suited for calculations. To pro-

ceed further, we need an explicit expression for the wave

function Ψ.

4. Attempts to find eigenvalues and eigenfunctions

of Hamiltonian (1) have a long history (see [12] for a list

of references). We use a variational method as many au-

thors listed in [12] did. In certain features our approach

bears a resemblance to that of [13, 14]. The wave func-

tion for the ground state is written as

Ψ0(ρ, z) =
√
N exp

(

− ρ2

2r2
⊥

− z2

2r2z

)

, (11)

where N = (π3/2r2
⊥
rz)

−1. The two parameters r⊥ and

rz are fitted at each value of H . According to [15]

r⊥ ∼ (H)−1/2, rz ∼ (lnH)−1. The rationale for choos-

ing Ψ0 in the form (11) is the following: a) it has a

desired form of an elongated ellipsoid, b) it has an axial

symmetry and invariant under reflection with respect

to ρ-plane, c) our calculations show that for H ≫ 1

the fitted wave function (11) is close to that obtained in

[6, 15], and for 0 < H < 1 the results are in agreement

with very accurate calculations of several authors, e.g.,

[16]. Necessary to stress that by taking the trial wave

function in a simple form (11), we shall be able to ex-

pose very clearly the new contribution into the hyperfine

splitting. The new effect is independent on the concrete

form of the trial wave function, or, more generally, on

the method to solve the problem.

The ground state energy is defined from

E0 = 〈Ψ0|Ĥ0|Ψ0〉,
∂E0

∂r⊥
= 0,

∂E0

∂rz
= 0, (12)

where Ĥ0 is obtained from (1) by removing the term

µBσzB. Straightforward calculation yields the following

result for E0

E0(r⊥, rz) =
1

2mr2
⊥

(

1 +
β2

2

)

+
mω2r2

⊥

2
−

− αβ

r⊥
√

π(1 − β2)
ln

1 +
√

1− β2

1−
√

1− β2
, (13)

where β = r⊥/rz < 1 for B > 0. Minimization of (13)

according to (12) yields r⊥ and rz as functions of H . For

illustrative purposes consider two limiting cases: a) H =

= 0, then ω = 0, r⊥ = rz , E0 = 4mα2/3π ≃ 0.85Ry

in line with [17], b) free particle in MF, then we obtain

r2 = (mω)−1, E0 = ω.

In Fig. 1 we plot the energy E0 as a function of H in

comparison with the results of [16]. The deviation from

the elaborated calculation [16] does not exceed 15%. In
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Fig. 1. Plot of E0 (without spin contribution) vs. H . Solid

curve – present calculation, dashed one from [16]

Fig. 2. The radii r⊥ (solid line) and rz (dashed line) in

atomic units as functions of H

Fig. 2 we display the radii r⊥ and rz as functions of H .

This figure demonstrates how the deformation of the

wave function with H proceeds.

5. With the fitted wave function at our disposal we

return to (9) perform the integration.

The integrals can be evaluated analytically with the

following final result:

Ĥhf = gµBµN{[F1(H) + F2(H)](σe · σp) +

+ [F1(H)− F2(H)]σpzσez}, (14)

where

F1(H) =
1√

πr2
⊥
rz

×

×
[

2

1− β2
− β2

(1 − β2)3/2
ln

1 +
√

1− β2

1−
√

1− β2

]

, (15)

F2(H) =
2√
πr3z

×

×
[

− 2

1− β2
+

1

(1− β2)3/2
ln

1 +
√

1− β2

1−
√

1− β2

]

. (16)

At H → 0, β → 1, r⊥ = rz = r, and from (15), (16) one

obtains

F1 = F2 = F =
4

3
√
π
r−3 =

4π

3
|Ψ(0)|2, (17)

and we return to Eqs. (4), (5). At H ≫ 1 we have

β ∼ lnH√
H

, F1 ∼ H lnH, F2 ∼
√
H ln2 H. (18)

Equations (14)–(17) comprise the essence of the physi-

cal process which can be called “Magnetic Focusing of

Hyperfine Interaction”. MF compresses the HA thus in-

creasing the wave function of the origin and giving rise

to MF-dependent tensor component.

6. The next task is to see how our results modify the

standard Zeeman splitting effect.

In MF the ground state of HA is splitted into four

levels with their energies obtained by the diagonaliza-

tion of the Hamiltonian

Ĥ′

hf = Ĥhf + µB(σe ·B)− gµN(σp ·B), (19)

where Ĥhf is given by (14) and has two new important

features. First, it depends on MF since the parameters

r⊥ and rz entering into F1 and F2 are fitted at each value

of H . Physically, this is tantamount to focusing of HA

wave function at the origin. Second, Ĥhf contains the

term proportional to σpzσez reflecting the deviation of

HA from spherical symmetry. Let us focus on the tran-

sitions between the states which at B = 0 correspond to

|a〉 = |S = 1, Sz = 0〉 and |b〉 = |S = 0, Sz = 0〉. From

(19) one gets

ν = Ea − Eb = ∆Ehfs

√

γ2 +

(

2µBB

∆Ehfs

)2 (

1 + g
m

mp

)2

,

(20)

where ∆Ehfs is given by (5) and γ = (F1 + F2)/2F .

Without Magnetic Focusing γ = 1 and the standard ex-

pression is retrieved. The quantity of interest is the dif-

ference δν = ν−ν0 with ν0 corresponding to γ = 1. Here

we present estimates of δν in the two limiting regimes

of super-strong (H ≫ 1) and weak (H ≪ 10−7)MF.

Performing simple calculations starting from (15), (16),

and (20) we arrive at the following results:

δν ≃ α6

(

m

mp

)

m(H ln2 H) ≃ 10−6(H ln2 H)MHz

(21)

for H ≫ 1 and

δν ≃ ∆Ehfs

(

1− r2
⊥

r2z

)

(22)

for H ≪ α2 m
mp

≃ 10−7 ≃ 100G. Evaluation of the quan-

tity r2
⊥
/r2z in the weak field limit requires very accurate
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numerical calculations which will be presented in the

forthcoming publication. We remind that the present

hydrogen maser experiments are sensetive to the varia-

tions of the Zeeman splitting of the order of 1 mHz [18].

In Fig. 3 we show δν in a rather wide interval of H .

Fig. 3. The frequency shift δν (see the text) vs. H

The growth of δν with H reflects the gradual deviation

of HA from the spherical symmetry.

7. Magnetic Field Focusing considered here for the

HA is a universal phenomenon important for any quan-

tum system/reaction in presence of MF as soon as the

wave function at the origin is an important parameter.

In particular, it leads to the modification of β-decay rate

in MF [19]. Another example is the spectrum of quark-

antiquark system [20]. Interesting effects occur also in

super-strong MF created in heavy-ion collisions. A few

words are needed to add concerning related problems

left beyond the scope of the present paper. Magnetic

focusing in muonic hydrogen may be easier to observe

experimentally [9]. For H ≫ 1 another correction comes

into play – proton can not be considered as infinitely

heavy and problem becomes a two-body one [21].

The authors are grateful for many useful discussions
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