For authors
Submission status

Archive (English)
      Volume 117
      Volume 116
      Volume 115
      Volume 114
      Volume 113
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
VOLUME 99 | ISSUE 6 | PAGE 382
Enhancing of the in-plane FFLO-state critical temperature in heterostructures by the orbital effect of the magnetic field
It is well-known that the orbital effect of the magnetic field suppresses superconducting Tc. We show that for a system, which is in the Larkin-Ovchinnikov-Fulde-Ferrell (FFLO) state at zero external magnetic field, the orbital effect of an applied magnetic field can lead to the enhancement of the critical temperature higher than Tc at zero field. We concentrate on two systems, where the in-plane FFLO-state was predicted recently. These are equilibrium S/F bilayers and S/N bilayers under nonequilibrium quasiparticle distribution. However, it is suggested that such an effect can take place for any plane superconducting system, which is in the in-plane FFLO-state (or is close enough to it) at zero applied field.