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Multilayer graphene waveguides
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We study dispersion properties of TM-polarized electromagnetic waves guided by a multilayer graphene

metamaterial. We demonstrate that both dispersion and localization of the guided modes can be efficiently

controlled by changing the number of layers in the structure. Remarkably, we find that in the long wavelength

limit, the dispersion of the fundamental mode of the N-layer graphene structure coincides with the disper-

sion of a plasmon mode supported by a single graphene layer, but with N times larger conductivity. We also

compare our exact dispersion relations with the results provided by the effective media model.
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Graphene plasmonics has attracted significant inter-

est from the nanophotonics research community [1, 2],

as it studies surface plasmon-polariton waves guided by

an one-atom-thin graphene layer. These waves are char-

acterized by the wavelength which is much smaller than

the free space wavelength, and they can exist in the THz

and far-infrared frequency ranges. Graphene plasmons

were extensively studied theoretically [1, 3–8], and more

recently plasmons in graphene were observed in experi-

ment [9, 10].

One of the main obstacle impeding the efficient use

of graphene in plasmonic devices is the difficulty of exci-

tation of graphene surface plasmon modes, which is due

to their deep subwavelength nature [11]. In this Letter,

we suggest to employ multilayer graphene structures to

overcome this difficulty. Multilayer graphene metama-

terials have been studied previously [12, 13], and it has

been shown that coupling of the surface plasmons at

individual graphene sheets results in the emergence of

the hyperbolic isofrequency contours, that can lead to

a large density of electromagnetic states in these struc-

tures. Here, we study the eigenmode dispersion of the

multilayer graphene structures with a finite number of

layers. We demonstrate that the field localization and

modes’ wavenumbers can be efficiently controlled by

varying the number of layers in the structure, making

such stacked graphene structures perspective for real

optoelectronic and nanophotonic applications and the

observation of strong nonlinear effects [14, 15]. Addi-

tionally, in contrast to the metal-dielectric structures,
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the properties of multilayer graphene waveguides can be

tunable by means of the electrostatic doping of graphene

or by applying an external magnetic field [16].

We consider a structure shown schematically in

Fig. 1. The graphene waveguide consists of a finite num-

Fig. 1. (Color online) Geometry of the multilayer graphene

waveguide. The broken curve shows schematically the pro-

file of the continuous z-component of the electric field for

the fundamental mode guided by the slab

ber of layers with deeply subwavelength spacing d filled

with dielectric material with permittivity ε. The waveg-

uide is sandwiched between two semi-infinite homo-

geneous dielectrics, the so-called substrate and super-

strate, having dielectric constants of ε1 and ε2, re-

spectively. Each of the N graphene layers is placed at

x = md, where m ∈ [0, N − 1]. The capping medium

and substrate medium therefore occupy the half-spaces

x < 0 and x > (N − 1)d, respectively. We assume har-

monic time-dependence for modes propagating along z

axis exp(−iωt) so that the propagation along z-axis is

described by the multiplier exp(ikzz), where kz = βk0 is

the propagation constant, k0 = ω/c is the wavenumber

Письма в ЖЭТФ том 99 вып. 7 – 8 2014 527



528 D. A. Smirnova, I. V. Iorsh, I. V. Shadrivov, Yu. S. Kivshar

in a free space, and β is the normalized wavenumber.

Next, we derive the dispersion relation by employing

the matrix method [17, 18]. In the regions md ≤ x ≤

≤ (m+ 1)d, the transverse profile of the magnetic field

can be presented in the form

Hy(x) = Hm
+ e−κx +Hm

− eκx, (1)

where κ = (k2z − k20ε)
1/2 is the transverse wavenumber.

From the Maxwell’s equations, we find the z-component

of the electric field continuous at the graphene layers,

given by Ez(x) = (iκ/k0ε)Hy(x). Since we are looking

for localized guided modes vanishing for large |x|, we

present the field outside the waveguide in the following

form

Hy(x < 0)=H0
−e

κ1x, Hy [x > (N − 1)d]=HNG
+ e−κ2x,

(2)

where κ1,2 = (k2z − k20ε1,2)
1/2. To study waves in a mul-

tilayer structure, it is convenient to use the transfer ma-

trix method which links the field amplitudes in the ad-

jacent periods, Hm+1
± and Hm

±

(

Hm+1
+

Hm+1
−

)

= T̂ ×

(

Hm
+

Hm
−

)

, (3)

where the transfer matrix T̂ = P̂ Ĝ is a product of

the matrices describing the boundary conditions at the

graphene layer

Ĝ =

(

1− 2πiσ(ω)κ/ωε 2πiσ(ω)κ/ωε

−2πiσ(ω)κ/ωε 1 + 2πiσ(ω)κ/ωε

)

, (4)

where σ(ω) is the frequency-dependent surface conduc-

tivity of a single layer of graphene, and P̂ being the

propagation matrix of a dielectric layer defined as

P̂ =

(

e−κd 0

0 eκd

)

. (5)

In our calculations, we neglect losses and assume

~ω < 1.67µ (Imσ > 0), where µ is the chemical poten-

tial, also taking conductivity for highly doped or gated

graphene (kBT ≪ µ) in the form [11]

σ(ω) =
ie2

π~

(

µ

~ω
+

1

4
ln
2µ− ~ω

2µ+ ~ω

)

, (6)

where e is the charge of electron, kB is the Boltzmann

constant, and T is the temperature.

For an infinite periodic structure, we employ the

Bloch theorem, Hm+1
± = Hm

± eiKBd, and obtain the dis-

persion of Bloch waves in the form

cos(KBd) = cosh(κd)−
κ

2ε

4πσ(ω)

ick0
sinh(κd). (7)

If d is large enough (or, equivalently, kz → ∞), the

above expression approaches the dispersion relation

for surface p-polarized plasmons supported by a single

graphene layer surrounded by dielectrics with permit-

tivity ε [19]:
2ε

κ
=

4πσ(ω)

ick0
. (8)

The matrices of the boundary conditions for the out-

ermost graphene layers can be written as

Ĝ1 =
1

2

(

1 + Z1 1−Z1

1−Z*
1 1 + Z*

1

)

, (9)

ĜNG =
1

2

(

1 + ZNG 1−ZNG

1−Z*
NG 1 + Z*

NG

)

, (10)

where

Z1 =
κ1ε

κε1
−

4π

c

iσ(ω)κ1

k0ε1
, (11)

ZNG =
κε2
κ2ε

−
4π

c

iσ(ω)κ

k0ε
. (12)

A linear relationship between the field amplitudes

on both sides of the multilayer structure can be written

in the matrix form
(

HNG
+

0

)

= M̂ ×

(

0

H0
−

)

, (13)

where the matrix M̂ is obtained sequentially multiply-

ing the matrices Ĝ and P̂ : M̂ = ĜNG(P̂ Ĝ)N−2P̂ Ĝ1. By

setting m22 = 0, we obtain the dispersion relation for

localized modes, from which we can find the wavenum-

ber for a given frequency numerically. Once we found

the wavenumber, we then calculate the corresponding

wavefunction using the matrix relation for the ampli-

tudes in the adjacent periods. The physical origin of the

modes is similar to that in other coupled systems, and

N interacting graphene sheets will support N plasmon

modes originating from coupling of plasmons of individ-

ual graphene layers.

All the possible cases of the dielectric permittivities

distributions can be divided by symmetry into symmet-

ric (ε1 = ε2) and asymmetric (ε1 6= ε2) cases. In the

case ε1 = ε2 = ε, all the modes lie in the allowed band,

whereas in all other cases branches can span in the for-

bidden band where the Bloch number has an imaginary

part and, thus, the respective modes are strongly local-

ized in the vicinity of the waveguide boundary.

In the most general case when all three dielectric

constants (ε, ε1, and ε2) are different, for large sepa-

rations (or, equivalently, kz → ∞) there exist N − 2
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degenerate states with an asymptote given by Eq. (8)

and 2 non-degenerate states with asymptotes

ε

κ
+

ε1,2
κ1,2

=
4πσ(ω)

iω
. (14)

Being mostly confined near the layers x = 0 and

(N − 1)d, two latter modes are related to the surface

Bloch waves localized near the edges of the multilayer

waveguide, and they can be attributed to the so-called

Tamm states.

Next, we consider a symmetric case ε1 = ε2 = ε.

For N = 2 and ε = ε1 = ε2, we have M̂ = ĜP̂ Ĝ, and

immediately obtain the dispersion relation for the sym-

metric and antisymmetric modes guided by a graphene

double-layer structure, studied earlier in Refs. [14, 20]:

1 +
2πiσ(ω)κ

ωε

(

1± e−κd
)

= 0. (15)

Importantly, for small spacing between the layers (κd ≪

≪ 1), the symmetric mode dispersion (positive sign in

Eq. (15)) coincides with the dispersion of a single plas-

mon (8), where conductivity is double that of a sin-

gle graphene layer. It means that for the fundamental

symmetric mode, adding two graphene layers effectively

doubles the conductivity of graphene.

For N ≥ 3, transfer matrix is M̂ = Ĝ(P̂ Ĝ)N−1. Us-

ing the Tchebychev identity, the dispersion relation for

the N -layer waveguide can be analytically simplified,

namely,

t21UN−2(a)g12+[t22UN−2(a)− UN−3(a)] g22 = 0, (16)

where tij , gij are the elements of the matrices T̂ and Ĝ,

Uk(a) are the Tchebychev polynomials with the argu-

ment a = (t11 + t22)/2. We look for the case of closely

spaced layers, and linearize Eq. (16) with respect to the

small parameter κd to obtain

1 +
2πiκNσ(ω)

ωε
+ (N − 1)κd = 0, (17)

where the third term can be omitted due to smallness of

κd. This leads us to the equation for the surface plasmon

dispersion (8), where the single graphene conductivity

is replace by N times larger conductivity, Nσ(ω). Fig. 2

shows the dispersion of the eigenmodes of the multilayer

graphene waveguide for different parameters. We can see

that for the fundamental mode in the low frequency re-

gion, where κd ≪ 1, the dispersion of the mode is well

described by the dispersion of the plasmon localized at

the graphene layer with permittivity Nσ (these disper-

sions are shown with blue dashed lines). The wavenum-

bers of such plasmons are significantly smaller, than

Fig. 2. (Color online) Dispersion of the eigenmodes of the

multilayer graphene waveguides consisting of 3 (a, c) and

5 (b) layers. The surrounding media and interlayer spac-

ers are made from the same material with dielectric per-

mittivity ε = 1 (a, b) and 4 (c). Period of the structure is

d = 8 nm in all the cases. Gray solid lines show the bound-

aries of the allowed band for the localized propagating so-

lutions inside the graphene slab. Black dashed line shows

the dispersion of the surface plasmon for a single graphene

layer; blue dashed line corresponds to the dispersion of a

surface plasmon localized at the two-dimensional conduct-

ing layer with permittivity Nσ. Insets show the electric

field profile |Ez| for the fundamental mode at frequency

~ω = 0.5µ (a, b) and 0.35µ (c)

those of the single layer, and therefore they should have

longer propagation distances, being easier to excite.

If we now consider the asymmetric waveguide, ε1 6=

6= ε2, we observe the emergence of the surface electro-

magnetic states, with the dispersion lying outside the

allowed band region as shown in Fig. 3. As was men-

tioned above, this leads to a finite imaginary part of the
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Fig. 3. (Color online) Dispersion of the asymmetric mul-

tilayer graphene waveguide, ε1 = 1, ε2 = 10, ε = 4,

d = 8nm. Gray solid lines show the boundaries of the al-

lowed band for the localized propagating solutions inside

the graphene slab. The dispersion branches that cross the

boundary of the allowed band correspond to the surface

Tamm states. Inset shows the profile of the electric field

|Ez| for the Tamm state for the parameters depicted with

the point at the dispersion branch at ~ω = 1.2µ

Bloch wavevector and localization of the mode at one of

the interfaces of the structure, as shown in the inset of

Fig. 3.

Now we compare the obtained eigenmode disper-

sion with the results provided by the effective medium

model. Within this model, the multilayer structure is

described as an uniform hyperbolic medium with di-

electric permittivity tensor components defined as [12]:

εyy = εzz = ε + 4iπσ(ω)/(ck0d), εxx = ε. General dis-

persion equation for the hyperbolic waveguide can be

written in the form:

cos(kxD)(kxκ1ε2εzz + kxεzzε1κ2) +

+ sin(kxD)(ε2zzκ1κ2 − k2xε1ε2) = 0, (18)

where kx = [εzzk
2
0 − k2z(εzz/εxx)]

1/2 and D = (N − 1)d.

Fig. 4 shows the comparison between the effective model

and the exact solution obtained by the transfer matrix

method. We notice a good agreement between the two

approaches in the limit kxd ≪ π.

We would like to emphasize that, by varying the

number of layers in the multilayer graphene waveguide,

we can effectively control the wavenumber of the fun-

damental guided mode. When the wavenumber of the

mode grows, it becomes harder to excite the mode op-

tically from the vacuum. Moreover, another important

property of the waveguide is the effective mode width

Λ which is a sum of the actual waveguide thickness and

double the localization length of the waveguide mode

outside the waveguide, Λ = (N − 1)d+ 2/κ.

Fig. 5 shows the dependence of the values kz/k0 and

Λ on the number of layers. As was mentioned above,

Fig. 4. (Color online) Comparison between the dispersion

curves of the eigenmodes obtained from the exact solution

(solid lines) and by means of the effective model (dashed

lines), for N = 20, d = 8nm, ε1 = ε2 = ε = 1

Fig. 5. (Color online) Dependence of the normalized

wavenumber of the fundamental guided mode kz/k0 (cir-

cles) and the effective width of the mode Λ (squares) on

the number of layers in the structure, solid curves are

guides for eye. The parameters are d = 8nm, ε1 = ε2 =

ε = 1, ~ω/µ = 0.5, µ = 0.1 eV. Crosses show the result of

the effective medium model

at the chosen frequency the normalized wavenumber of

the wave decreases as 1/N , so that we can easier excite

the mode by increasing the number of layers. Accord-

ingly, the effective waveguide thickness grows linearly

with the number of layers. We can also observe, that

as we increase the number of layers, the mode disper-

sion is better described within the effective media model

(shown with the crosses).

In conclusion, we have studied the dispersion prop-

erties of the plasmonic modes guided by multilayer

graphene structures. We have revealed that the localiza-

tion of the fundamental mode can be substantially con-

trolled by varying the number of layers in the graphene

structure, which can serve as an additional parameter

for optimizing designs in graphene-based nanophoton-

ics. We have demonstrated that by using multilayer

graphene structures one can control efficiently the de-
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gree of localization of plasmon modes, as well as their

group and phase velocities.
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