Температурная эволюция спинового состояния иона $m Co^{3+}$ в кобальтитах $R m CoO_3$ (R= m La,~ m Gd)

Р. Ю. Бабкин, К. В. Ламонова, С. М. Орел, С. Г. Овчинников⁺¹⁾, Ю. Г. Пашкевич

Донецкий физико-технический институт им. Галкина НАНУ, 83114 Донецк, Украина

+Институт физики им. Киренского СО РАН, 660036 Красноярск, Россия

Поступила в редакцию 24 марта 2014 г.

С использованием температурных зависимостей магнитной восприимчивости и метода модифицированной теории кристаллического поля изучено изменение спинового состояния ионов Co^{3+} в соединениях LaCoO₃ и GdCoO₃. Показано, что спиновая подсистема иона Co³⁺ в LaCoO₃ и GdCoO₃ претерпевает переход спин-кроссоверного типа высокий спин (S = 2)-низкий спин (S = 0) без участия состояний с промежуточным спином (S = 1).

DOI: 10.7868/S0370274X14080116

Введение. Редкоземельные кобальтиты 1. $RCoO_3$ (где R – редкоземельные элементы) со структурой перовскита относятся к большому классу соединений с сильными электронными корреляциями (СЭК) и конкуренцией различных спиновых состояний [1]. Тесное взаимодействие структурных и спиновых степеней свободы позволяет с помощью температуры, давления, света и магнитного поля не только управлять спиновой и магнитной подсистемами, но и изменять транспортные свойства *R*CoO₃. Например, необычное поведение температурной зависимости магнитной восприимчивости [2, 3] позволило предположить, что LaCoO₃ претерпевает два фазовых перехода, один из которых связан с изменением спинового состояния иона Co³⁺, а второй – с изменением свойств транспортной системы (переход металл-диэлектрик). Природа и характер спинового перехода до сих пор остаются предметом дискуссий, так как электронная конфигурация трехвалентного кобальта $(3d^6)$ предполагает наличие трех спиновых состояний: низкоспинового LS (S=0), состояния с промежуточным спином IS (S = 1) и высокоспинового HS состояния (S = 2). С одной стороны, до конца не ясно, является ли спиновый переход классическим спин-кроссовером типа LS↔HS [4] или имеет более сложный сценарий, в который вовлечено состояние с промежуточным спином, $LS \leftrightarrow IS \leftrightarrow HS$ [5]. С другой стороны, все еще актуален вопрос о природе спинового перехода. Является ли этот переход результатом температурного заселения уровней, отвечающих различным спиновым состояниям, либо под действием температуры перестраивается система энергетических уровней, так что основное и возбужденные спиновые состояния меняются местами? Возможно ли, что в момент перехода одновременно работают оба фактора?

Целью данной работы является исследование характера и природы спиновых переходов, возникающих под действием температуры в соединениях $RCoO_3$ с R = La, Gd. Для расчетов и дальнейшего анализа использованы кристаллографические данные для LaCoO₃ [6] и GdCoO₃ [7], а также расчетная полуэмпирическая теория модифицированного кристаллического поля (МТКП), подробно изложенная в [8]. Основные положения МТКП можно сформулировать следующим образом.

1. Аналогично классической ТКП кристаллический потенциал создается зарядами электронов и ядер, окружающих парамагнитный ион и образующих координационный комплекс.

2. Все расчеты проводятся в рамках одноконфигурационного приближения. При этом набор базисных функций, отвечающих определенной электронной конфигурации, включает конечное число ортонормированных антисимметричных многоэлектронных функций.

3. Многоэлектронные функции строятся из одноэлектронных водородоподобных функций с эффективным зарядом ядра $Z_{\rm eff}$ в качестве варьируемого параметра.

4. В рамках приближения Борна–Оппенгеймера собственные функции, на которых строится решение, параметрически зависят от координат и зарядов лигандов.

Письма в ЖЭТФ том 99 вып. 7-8 2014

¹⁾e-mail: sgo@iph.krasn.ru

5. Учитываются релятивистское спин-орбитальное взаимодействие и взаимодействие с внешним магнитным полем.

2. Анализ искажений и расчет энергии и магнитной восприимчивости. Кристаллографическая структура соединений $RCoO_3$ с R = La, Gd хорошо известна [9]. Здесь мы отметим только, что ионы Co^{3+} находятся в одной кристаллографической позиции. Они помещены в искаженные кислородные октаэдры, параметры которых (углы и длины связей кобальт–кислород) изменяются при повышении температуры. Температурные зависимости наиболее существенных октаэдрических искажений, классифицированных с помощью аппарата нормальных координат [10], представлены на рис. 1.

Рис. 1. Температурные зависимости искажений $Q_i^{\text{La}(\text{Gd})}(T)$ октаэдрического кислородного комплекса с ионом Co^{3+} в соединениях LaCoO₃ и GdCoO₃. По оси ординат отложены смещения лигандов $\Delta \xi_j$ ($\xi = x, y, z; j = 1, 2, ..., N; N$ – число лигандов в координационном комплексе). Нормальные смещения Q_{α} ($\alpha = 1, 2, ..., 3N - 3$) являются линейными комбинациями $\Delta \xi_j$ [10]

Кобальтит LaCoO₃. Очевидно, что в LaCoO₃ наиболее значимым является однородное расширение, описываемое нормальной координатой Q_1^{La} (так называемая breathing-mode, дышащая мода) (рис. 1). С ростом температуры Q_1^{La} увеличивается, т. е. увеличивается объем координационного комплекса. На кривой $Q_i^{\text{La}}(T)$ для LaCoO₃ (рис. 1а) имеются особенности в окрестности температур 100 и 550 К. Характерно, что именно при этих температурах наблюдаются аномалии в поведении магнитной восприимчивости при изменении температуры [2, 3] (рис. 2). Отметим также, что остальные искажения хотя и присутствуют в комплексе, но слабо изменяются с температурой и не оказывают решающего влияния на температурную эволюцию спиновой подсистемы LaCoO₃.

Используя структурные данные и методику расчета магнитных характеристик соединения, изложенную в [11], мы рассчитали свободную энергию, намагниченность и магнитную восприимчивость для кобальтовой подсистемы LaCoO₃ в зависимости от температуры и эффективного заряда ядра ионов кобальта $Z_{\text{eff}}^{\text{Co}^{3+}}$. (Отметим, что в отличие от традиционной теории кристаллического поля, которая оперирует величиной эффективного заряда ядра свободного иона $Z_{\text{eff}}^{\text{FI}}$, МТКП использует эффективный заряд ядра иона, помещенного в кристаллическое по-ле, $Z_{\rm eff}^{\rm CF} = Z_{\rm eff}^{\rm FI} - \sigma^{\rm CF}$ (где $\sigma^{\rm CF}$ – величина дополнительного экранирования, связанного с кристаллическим полем). Поскольку $\sigma^{\rm CF}$ зависит от природы, расположения и числа лигандов координационного комплекса, $Z_{\rm eff}^{\rm CF}$ есть величина переменная и также зависящая от свойств кристаллического поля.) В МТКП параметр Z_{eff} является управляющим и, вообще говоря, неизвестным, поскольку он зависит от свойств конкретной кристаллической матрицы и, следовательно, от температурной эволюции параметров координационного комплекса. Для его определения в рамках МТКП необходимы дополнительные экспериментальные данные. В некоторых случаях в качестве такого экспериментального материала могут выступать величины *q*-факторов, полученные с помощью ЭПР (электронный парамагнитный резонанс) спектроскопии [12].

На рис. 2а представлены экспериментальная и расчетная температурные зависимости магнитной восприимчивости. Видно, что расчетная кривая находится в хорошем согласии с экспериментальной вплоть до температуры ~ 550 К. Расхождение при более высоких температурах может быть связано с тем, что в этом диапазоне температур соединение переходит в металлическую фазу [13], которая находится вне пределов применимости МТКП.

На рис. 2b показана температурная эволюция шести нижних уровней энергии иона Co^{3+} . В окрестности точки 550 К низкоспиновое состояние сменяется высокоспиновым. В результате реализуется спиновый переход типа LS \leftrightarrow HS. Очевидно, что при $T \leq 200$ К энергии возбужденных уровней $\Delta E \geq 200$ К, т.е. в этом температурном диапазоне возбужденные уровни, отвечающие высокоспиновому состоянию, вообще не заселены или заселены слабо. Таким образом, ион Co^{3+} находится в немагнитном состоянии с S = 0. При температурах выше 200 К энергии возбужденных уровней сравнимы с kT. Это обеспечивает возможность их температурного заселения.

Рис. 2. (Цветной онлайн) (a) – Температурная зависимость магнитной восприимчивости. Расчетная кривая обозначена линией, экспериментальная – кружками. (b) – Температурные зависимости первых шести энергетических уровней спектра иона Co^{3+} в LaCoO₃. Сплошная синяя кривая отвечает спину S = 0, штриховые красные – спину S = 2. Энергия основного состояния принята за нуль

Следовательно, хотя в этой области основной вклад в восприимчивость и дают возбужденные высокоспиновые состояния (заштрихованная область на рис. 2), основным состоянием по-прежнему остается низкоспиновое. Наконец, при температурах $T \ge 550$ К происходит спин-кроссоверный переход. Основное состояние становится магнитным со спином S = 2.

Заметим, что состояния с промежуточным спином имеют более высокую энергию и располагаются значительно выше по энергии. Этот вывод подтверждается результатами расчетов спиновых щелей, приведенными на рис. 3. Здесь спиновая щель

Рис. 3. Зависимости спиновых щелей $\Delta_{\rm HS(IS)-LS}(T) = E_{\rm HS(IS)} - E_{\rm LS}$ от температуры для соединений LaCoO₃ и GdCoO₃

определена как разность между уровнями энергий с двумя разными спиновыми состояниями. Видно, что спиновая щель $\Delta_{\text{IS-LS}}^{\text{La}}(T) = E_{\text{IS}} - E_{\text{LS}}$ в исследуемом интервале температур значительно превышает

 $\Delta_{\text{HS-LS}}^{\text{La}}(T) = E_{\text{HS}} - E_{\text{LS}}$. Следовательно, состояния с промежуточным спином практически не влияют на характер спинового перехода.

Кроме того, расчеты показали (см. вставку к рис. 3), что температурная зависимость спиновой щели $\Delta_{\text{HS-LS}}^{\text{La}}(T)$ в отличие от $\Delta_{\text{HS-LS}}^{\text{Gd}}(T)$ [7] ведет себя немонотонно, а величины $\Delta_{\text{HS-LS}}^{\text{La}}(T)$ значительно отличаются от оценки, сделанной в работе [14].

Для анализа эволюции спиновой подсистемы октаэдрического комплекса $[CoO_6]$, который является основной структурной единицей соединения LaCoO₃, была построена диаграмма спиновых состояний (спиновая диаграмма) (рис. 4). Техника построения спи-

Рис. 4. (Цветной онлайн) Спиновая диаграмма и
она Со $^{3+}$ в LaCoO₃. Зеленая кривая — температурная зависимость эффективного заряд
а $Z_{\rm eff}^{\rm Co}{}^{3+}(T)$

новых диаграмм подробно изложена в работе [15]. С учетом температурных зависимостей кристалло-

Письма в ЖЭТФ том 99 вып. 7-8 2014

графических данных соединения LaCoO₃ спиновая диаграмма представляет собой поверхность среднего квадрата спина парамагнитного иона $\langle S^2 \rangle = S(S+1)$, построенную на плоскости параметров температура – эффективный заряд ядра иона кобальта. Видно, что в исследуемых диапазонах температур для $Z_{\text{eff}}^{\text{Co}^3}$ основное состояние может быть только низко- и высокоспиновым. Области состояний, отвечающие промежуточному спину, не реализуются, поскольку тригональные искажения Q_4 -, Q_5 - и Q_6 -типов, имеющиеся в системе (см. рис. 1), на порядок меньше величин, которые могут стабилизировать состояния со спином S = 1 [8]. На рис. 4 имеется узкая область, которая выглядит как область состояний с промежуточным спином. В данном случае это связано с эффектами визуализации результатов счета. На самом деле в данной переходной области вес состояний с промежуточным спином так же мал, как и на всей диаграмме. Сопоставляя результаты расчета $\chi(T, Z_{\text{eff}}^{\text{Co}^{\circ+}})$ и экспериментальную кривую $\chi_{\exp}(T)$ (рис. 2a), мы восстановили температурную зависимость $Z_{\text{eff}}^{\text{Co}^{3+}}(T)$ (отмечена зеленым цветом на рис. 4), т.е. траекторию изменения состояния спиновой подсистемы иона Co^{3+} .

Нетривиальное поведение кривой $Z_{\text{eff}}^{\text{Co}^{3+}}(T)$ на рис. 4 объясняет необычный "затяжной" спиновый переход, наблюдающийся в LaCoO₃. Резкое изменение направления кривой вблизи температуры 50 K, последующий длительный ход вдоль границы и, наконец, еще один резкий поворот в окрестности 500 K в сторону высокоспинового состояния приводят к реализации спинового перехода LS↔HS. Таким образом, предположение о том, что переход в LaCoO₃ протекает с вовлечением состояний с промежуточным спином, является неоправданным.

В заключение заметим, что величина эффективного заряда ядра иона Co^{3+} , помещенного в кристаллическую матрицу LaCoO₃, понижается приблизительно на 20% по сравнению со значением эффективного заряда ядра свободного трехвалентного кобальта ($Z_{\mathrm{eff}}^{\mathrm{FI}}(\mathrm{Co}^{3+}) = 8.3$) [16]. При этом в температурном диапазоне от 0 до 1000 K значение эффективного заряда ядра изменяется в пределах от 6.53 до 6.57. Другими словами, температурные деформации октаэдрического комплекса приводят к понижению $Z_{\mathrm{eff}}^{\mathrm{Co}^{3+}}(T)$ менее чем на 1%. Несмотря на это, температурно-индуцированное изменение $Z_{\mathrm{eff}}^{\mathrm{Co}^{3+}}(T)$ приводит к существенной перестройке уровней энергии, сопровождающейся сменой основного спинового состояния.

Кобальтит GdCoO₃. Для сравнения условий реализации спинового перехода в LaCoO₃ и GdCoO₃ мы рассчитали диаграмму спиновых состояний иона Co^{3+} в октаэдрическом комплексе [CoO₆], который является основной структурной единицей соединения GdCoO₃ (рис. 4). Здесь координационный комплекс [CoO₆] искажен сильнее, чем в LaCoO₃ (см. рис. 1): в нем присутствуют искажения янтеллеровского типа $(Q_2^{\text{Gd}} \text{ и } Q_3^{\text{Gd}})$, а искажения тригонального типа $(Q_4^{\text{Gd}}, Q_5^{\text{Gd}} \text{ и } Q_6^{\text{Gd}})$ играют более существенную роль. Оба вида искажений могут способствовать реализации состояний с промежуточным спином при условии, что смещения лигандов достигают 0.2 А. В действительности же смещения лигандов не превышают 0.04 А. Поэтому состояния, отвечающие промежуточному спину (см. рис. 3), как и в случае LaCoO₃, не оказывают влияния на характер перехода. Резкий рост $Q_1^{\mathrm{Gd}}(T)$ для GdCoO_3 (см. рис. 1b) в диапазоне температур 300-700 К отвечает росту обратной магнитной восприимчивости [7].

На спиновой диаграмме на рис. 5 зеленым цветом отмечена траектория изменения спинового состоя-

Рис. 5. (Цветной онлайн) Спиновая диаграмма и
она Со $^{3+}$ в GdCoO3. Зеленая кривая — температурная зависимость эффективного заряд
а $Z_{\rm eff}^{{\rm Co}^{3+}}(T)$

ния под действием температуры. Видно, что несмотря на немонотонное поведение, в диапазоне температур 100–800 К вариация эффективного заряда ядра не превышает 0.2%, а спиновый переход в GdCoO₃ реализуется в температурном диапазоне 650–700 К.

3. Выводы. В настоящей работе на основе температурных зависимостей магнитной восприимчивости, рентгеноструктурных данных, полученных в широком температурном интервале, а также метода модифицированной теории кристаллического поля была исследована температурная эволюция спинового состояния ионов Co³⁺ в соединениях LaCoO₃

Письма в ЖЭТФ том 99 вып. 7-8 2014

и GdCoO₃. Описаны сценарии температурного поведения спиновых подсистем ионов Co^{3+} в LaCoO₃ и GdCoO₃.

Обнаружено, что в LaCoO₃ до 150 K ион Co³⁺ находится в состоянии со спином S = 0, выше 550 K – в состоянии со спином S = 2. В промежутке 150 \leq $\leq T \leq 550$ K магнитная восприимчивость формируется температурным заселением возбужденных высокоспиновых состояний. Переход однозначно определяется двумя спиновыми состояниями: LS \leftrightarrow HS.

В GdCoO₃ кобальтовая подсистема находится в состоянии со спином S = 0. Уровни, соответствующие высокоспиновому состоянию, заселяются только в окрестности температур 650-700 К. При этом имеет место перестройка энергетической системы, в результате которой происходит спиновый переход.

В заключение можно сделать следующий обобщающий вывод. Температурно-индуцированные спиновые переходы всегда протекают за счет совместного действия двух факторов: температурного заселения уровней, отвечающих различным спиновым состояниям, и перестройки системы энергетических уровней, в результате которой основное и возбужденные спиновые состояния меняются местами. Эта перестройка вызвана тепловым расширением решетки, которое играет роль отрицательного давления.

В обоих случаях спиновое состояние с промежуточным спином не участвует в формировании магнитных свойств кристалла, поскольку во всем исследуемом температурном интервале его энергии находятся значительно выше высокоспиновых и низкоспиновых состояний.

Авторы благодарят российско-украинский грант # 27-02-12, целевую комплексную программу фундаментальных исследований НАН Украины 91/14-H, а также проекты НШ-2886.2014.2, 216 Президиума РАН и РФФИ (грант # 13-02-00358) за финансовую поддержку.

- Н.Б. Иванова, С.Г. Овчинников, М.М. Коршунов, И.М. Ерёмин, Н.В. Казак, УФН **179**, 8 (2009).
- V. G. Bhide, D. S. Rajoria, G. R. Rao, and C. N. R. Rao, Phys. Rev. B 6, 1021 (1972).
- C. Zobel, M. Kriener, D. Bruns, J. Baier, M. Gruninger, and T. Lorenz, Phys. Rev. B 66, 020402 (2002).
- 4. J. B. Goodenough, J. Phys. Chem. Solids 6, 287 (1958).
- R. H. Potze, G. A. Sawatzky, and M. Abbate, Phys. Rev. B 51(11), 501 (1995).
- P.G. Radaelli and S.-W. Cheong, Phys. Rew. B 66, 094408 (2002).
- Yu.S. Orlov, L.A. Solovyov, V.A. Dudnikov, A.S. Fedorov, A.A. Kuzubov, N.V. Kazak, V.N. Voronov, S.N. Vereshchagin, N.N. Shishkina, N.S. Perov, K.V. Lamonova, R.Yu. Babkin, Yu.G. Pashkevich, A.G. Anshits, and S.G. Ovchinnikov, Phys. Rev. B 88, 235105 (2013).
- K. V. Lamonova, E. S. Zhitlukhina, R. Yu. Babkin, S. M. Orel, S. G. Ovchinnikov, and Yu. G. Pashkevich, J. Phys. Chem. A **115**(46), 13596 (2011).
- G. Thornton, B.C. Tofield, and A.W. Hewat, J. Sol. State Chem. 61, 301 (1986).
- I.B. Bersuker, in *Electronic Structure and Properties* of Transition Metal Compounds. Introduction to the Theory, ed. by I.B. Bersuker, Wiley, N.Y. (1996).
- О. В. Горостаева, К. В. Ламонова, С. М. Орел, Ю. Г. Пашкевич, ФНТ **39**(4), 442 (2013).
- Р. Ю. Бабкин, К. В. Ламонова, С. М. Орел, Ю. Г. Пашкевич, В. Ф. Мещеряков, Опт. и Спектр. 112(2), 206 (2012).
- J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel, H. Kierspel, A. Freimuth, and T. Lorenz, Phys. Rev. B 71, 014443 (2005).
- K. Knizek, Z. Jirak, J. Hejtmanek, M. Veverka, M. Marysko, G. Maris, and T. T. M. Palstra, Eur. Phys. J. B 47, 213 (2005).
- Е. С. Житлухина, К. В. Ламонова, С. М. Орел, Ю. Г. Пашкевич, ФНТ **38**(10), 1175 (2012).
- Р. Ю. Бабкин, К. В. Ламонова, С. М. Орел, Ю. Г. Пашкевич, Опт. и Спектр. 107(1), 13 (2009).