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The conductivity of the half filled Landau level
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It is shown that the thermodynamic instability at the half filling of Ll leads to the vortex lattice formation

with the electronic spectrum analogous to that of graphene with two Dirac–Fermi points on Brillouin cell

boundary. This result is used for the explanation of the observed current generated by SAW (surface acoustic

wave) in the heterostructure on the surface of piezoelectric GaAs. Using the existence of two Fermi points

instead Fermi surface suggested in the previous theoretical works, permit the explanation of the experimental

results.

DOI: 10.7868/S0370274X14090070

The theory of electron states with Fractional Hall Ef-

fect developed in a short time after the experimental dis-

covery (Tsui, Stoermer, Gossard, 1982) was used mostly

the projection method assuming that the states must

be constructed exclusively from the states of the first Ll

like the famous Laughlin function [1, 2] for 1/3 fraction.

Indeed there is no explicit calculation of the possible

fractions using this assumption. The phenomenological

theory of “composite” fermions [3] assuming that the

electrons are “dressed” by some additional magnetic flux

gives some part of the observed electron densities [3] as

well as a bit more refined theory of Chern–Simons field

[4].

Later it was shown in the work [5] that the electron

states with the partially filled Ll are thermodynamic

unstable due to the formation of the quantized vortices

lowering the electron free energy in the external mag-

netic field. In spite of triviality in the argumentation

of [5] the result is quite general and we repeat it. The

electron free energy in the external magnetic field [6] is

F = E −
∫

Ajd2r where E is the internal electron en-

ergy, A is the external vector-potential, j is the electrical

current density. Suppose we know the internal energy E

at j = 0 which can be obtained by the minimization

of the average for the electron hamiltonian. In any case

δE/δψ = 0 where ψ is the electron wave function at zero

temperature. Now we change the electron wave function.

Irrespective to the details of the hamiltonian the varia-

tion of E will be of the second order in the variation of

the wave function. But the change of the average cur-

rent is the quantity of the first order in this variation

and we can minimize the free energy creating a nonzero

current. It is quite evident for the free noninteracting

electrons. This phenomenon has a close analogy in the
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formation of vortices in a rotating vessel [7] with liquid

He3. In a large enough sample the vortices form the

periodic vortex lattice.It is a kind of a phase transition.

We shall consider strong magnetic fields when the

kinetic energy term is dominating compare to Coulomb

interaction term. That gives the possibility to ne-

glect Coulomb interaction as a quantity proportional

to square root of magnetic field small compare to the

main term proportional to magnetic field including the

interaction with the vortex lattice.

The lattice periodicity in magnetic field is not

enough to have a band energy structure for electrons be-

cause the translations change the hamiltonian and one

must use so called ray representations of the periodic

space groups. The simple energy band structure arise

only for the rational magnetic flux per unit cell of the

vortex lattice l/nΦ0,where Φ0 = 2πe/c~ is the unit of

the flux, (l, n) are co prime numbers. The requirement

defining the electron density for the filled energy bands

[5] has the form

Bs+KΦ0 =
l

n
Φ0, (1)

where B is the external magnetic field, s is the unit cell

area, K is the vortex circulation number. The prefer-

ence has |K| = 1 for each individual vortex because it

gives the minimal electron energy. The electron density

of the fully filled vortex lattice is

ne =
B

Φ0

l − nK

n
. (2)

That covered all observed fractions in FQHE. Unfortu-

nately there is no attempts to observe the vortex lattice

directly. It is a difficult experimental problem.

But some specific properties of the electrons in the

vortex lattices can be observed not only by FQHE which
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require the energy gap at the boundary of the filled

band. There are the specific cases when the vortex ve-

locity is fully compensating the external magnetic field

e.g.

Bs− 2Φ0 = 0. (3)

It is easy to see that this case corresponds to the half

filled Ll density. This equation corresponds to two vor-

tices with the unit circulation in unit cell. There are

also other cases with the larger number of the vortices

in unit cell but we restrict our consideration by this case

in connection with the experimental results [8].

Fig. 1. The Brillouin cell in the reciprocal lattice for the

half-filled Ll

On the surface of the piezoelectric GaAs

was constructed a high quality heterostructure

AlxGa1−xAs/GaAs. In the volume of piezoelectric

GaAs was generated SAW (surface acoustic wave)

which produced the electric field acting on 2DES at

strong magnetic field. The finite conductivity of 2DES

gives the additional dissipation which can be registered

to measure the conductivity at various electron densi-

ties. The results show the ohmic conductivity at the 1/2

and 1/4 of Ll fillings. The strongest conductivity is at

1/2 filling. The experimental results in the full extent

were not explained by the theory of the composite

fermions [3], or by Chern–Simons field [4], both suggest-

ing the existence of the Fermi surface. We shall try to

construct the physical picture and calculate the proper

conductivity in the model of the vortex lattice. We can

choose the gauge with Aeff ≡ Aeff,y = Aext +Av where

the effective vector-potential is the sum of the external

vector potential and the contribution of vortices [5]. If

the total flux through the unit cell vanish the magnetic

translations transform into en ordinary abelian group

of translations. The main term in the hamiltonian with

a strong magnetic field shall be

H =

∫

ψ̂+ ~
2

2m

[

−i∇− e

c~
Aeff,y

]2

ψ̂d2r. (4)

The Fourier transformation of the periodic function

Aeff,y(r) defines the reciprocal lattice. We suppose the

simplest hexagonal lattice for the vortices with the sim-

plest Brillouin cell in the form of the hexagon with two

nonequivalent vectors k0 and k′
0 on its boundary. It

means that (see e.g. [9]) the space group of 2d vortex

crystal in the vicinity of k0 and k′
0 inevitably has two di-

mensional representations and the gap between two sub-

sequent bands in these points vanish. The space group

representations is well known in their vicinity. Therefore

we have not a Fermi surface as supposed in [3, 4] but

two Fermi points

k0 = (kx0 , k
y
0 ); k′

0 = (kx0 ,−ky0), (5)

where kx0 = 2π/3a and ky0 = 2π/3
√
3a here a is the

length of the unit cell side. The electron wave functions

have two dimensional representation

ψ+ = (ψ+
1 , ψ

+
2 )

as a line and

ψ =

(

ψ1

ψ2

)

as a column well known for the electrons in graphene.

But the length scale in the vortex lattice is of the or-

der of the magnetic length lB =
√

c~/eB large compare

to the inter atomic scale in graphene at existing mag-

netic fields. That is important because the electric field

generated by SAW in [8] may have the wave length com-

parable to the size of the unit cell of the vortex lattice.

The two dimensional representation of the space

group near the points k0,k
′
0 gives Dirac like spectrum

at the electron chemical potential equal to the energy

at these points

H0 = vf

∫

ψ+p̂lσlψd
2r. (6)

Here σl = (σx, σy) are 2 × 2 Pauli matrices, vf is a

constant defining the energy spectrum

ǫ = ∓vfp. (7)

Where pl = πl − k0l or p′l = πl − k′0l and πl is the local

quasimomentum.

In order to find the electron conductivity one must

perform the second quantization of the electron wave

function putting
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ψ(r, t) =
∑

p

exp[i(k0 + p)r]×

× [ψ−(p)a−(p, t) + ψ+(p)a+(p, t)] , (8)

ψ+(r, t) =
∑

p

exp[−i(k0 + p)r]×

×
[

ψ+
−(p)a

+
−(p, t) + ψ+

+(p)a
+
+(p, t)

]

, (9)

where two-component functions ψ∓(p), ψ
+
∓(p)

are normalized and orthogonal. The quantities

a∓(p, t), a
+
∓(p

′, t) give standard Fermi operators in

Heisenberg representation with the undisturbed hamil-

tonian H0. We suppose that all states with negative

energy are filled. An analog representation is in the

vicinity of k′
0.

The current is induced by the electrical potential of

the SAW in the form

φ(y, t) = [exp (iκy − iωt) + exp (−iκy + iωt)]φ0, (10)

where φ0 is real and ω(κ) = c0κ where c0 is the velocity

of SAW.

The correspondent term in the Hamiltonian is

H ′ =

∫

eφ(y, t)ρ̂d2r, (11)

where ρ̂(r) = ψ+(r)ψ(r) is the density operator.

The value of the electrical potential is supposed to

be small compare to the other terms in the total Hamil-

tonian

H =

∫

d2rψ+(r)vfσlplψ(r) + e

∫

d2rφ(y, t)ψ+(r)ψ(r).

(12)

Treating the potential term as a small perturbation we

can use Kubo expression for the average current [10]

〈jy(r, t)〉 =

= − ie
2

~

∫ t

−∞

dt1

∫

d2r1〈[ĵy(r, t)ρ̂(r1, t1)]〉φ(y1, t1), (13)

where ĵy(r, t) is the current operator in Heisenberg rep-

resentation with the unperturbed Hamiltonian H0 and

ρ̂(r1, t1) is the same for the density operator. The square

brackets denote the commutator for the two inside op-

erators. The angle brackets denote the average over the

state with all negative energies filled.

The external electrical potential of SAW generate

some transitions from the occupied states in the vicin-

ity of k0 and k′
0 to unoccupied states with the positive

energies. The most important are the transitions from

the vicinity of k′
0 (negative energy) to the vicinity of

k0 (positive energy) and the inverse transition from the

vicinity of k0 to the vicinity of k′
0, both possible at a

large enough wave vector κ of the SAW.

But this model suggests the infinite life time of the

created electron-hole pairs and give the divergent time

integral in Kubo formula. Indeed the electron-hole pairs

have a finite life time which can be taken into account

by the exponentially decreasing factor exp (t1/τ) with

some phenomenological electron-hole life time τ con-

nected with the annihilation process on the impurities.

That correspond to the results by so called “cross” tech-

nique taking into account the scattering processes [11].

We can write the full expression for the average cur-

rent in this approximation using the definitions (6)–(11):

〈jy(0, 0)〉 = − ie
2vf
h

∫ 0

−∞

exp
t1
τ
dt1 ×

×
∫

d2r1

〈[

ψ+(0, 0)
py
p
ψ(0, 0), ψ+(r1, t1)ψ(r1, t1)

]〉

×

× φ(y1, t1). (14)

Here we use the uniformity of the current in time and

space and put r = t = 0.

It is easy to show that there are two kinds of the pro-

cesses corresponding to the different terms in the com-

mutator and generated by different terms in the real

electric potential. Therefore it is possible to consider

only one process given by the matrix element with the

transition k′
0 → k0 with the corresponding term in the

electric potential with κ ≥ ky0 − k′y0. The terms in the

commutator defining the average current are

ny

∑

allp

〈a+−(p′)ψ+
−(p

′)a+(p)ψ+(p)a
+
+(p

′
1, t1)ψ

+
+(p

′
1)×

× a−(p1, t1)ψ−(p1) exp i(p1 − p′
1)r1〉,

where ny is the unit vector in y direction.

Putting this expression into the formula for the av-

erage current and performing the integrations over r1
and t1 and using the absence of the excitations above

the filled states with a negative energy one get for one

electron close to k′
0

〈jy〉 =
2e2

~
vfφ0

[

ω(κ)τ2

1 + ω2τ2

]

|ψ+
+(k

′
0y + κ)ψ−(k

′
0y)|2S.

The product of the normalization factors is equal to

S−2, where S is the sample area and assuming ωτ ≪ 1

we get for the current generated by one electron close

to k′
0

〈jy〉 =
2e2

~
vfc0κτ

2 φ0
S
.

This expression give the contribution to the total aver-

age current by one electron with quasimomentum close
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to k′
0 (and k0 as well). If one takes the electron with the

other momentum p and the energy ǫ(p) ≪ ~ω(κ) the

contribution will be practically the same. The increas-

ing of the electron energy far from the critical points

gives the additional oscillation diminishing their contri-

bution to the current and give the invalidation of used

Dirac spectrum. Therefore the total contribution to the

current can be estimated as

〈jy〉 =
2e2

~
vfc0τ

2νκ
φ0
S

=
2e2

~λ2
vf c0τ

2κφ0,

where ν = S/λ2 is the number of electrons in the "effec-

tive"vicinity of the critical points with a small energy.

Here λ is the averaged wave length of the electrons in the

“effective” domain near the critical points. It is impossi-

ble to have an electron-hole life time τ shorter then 1/ω

that gives the maximal estimate 1/ω = τ . That gives

the crude estimate for the current independent on τ

jy =
(2π)3e2

~
κφ0.

Fig. 2. Reproduced from the work [7] by the permit of

R.L.Willett

The direct calculation of the current for the other

realization of the electrical potential

φ(r, t) = φ0 [exp(−iωt) exp(−iκr) + exp(iωt exp(iκr)]

(15)

instead (10) replacing κ → −κ, ω → ω we obtain the

same formula for the current but with the negative κ

(the direction of the current is opposite).

Thus the conductivity is proportional to the wave

vector of the SAW. That is confirmed by the experimen-

tal results of [8] giving the explicit linear dependence on

the wave vector in a wide region beginning from some

finite value of κ. It must be noted that in our consid-

eration we have neglected by thermal effects. That is

possible by using Gibbs average in Kubo formula in a

more complete consideration. Thus we have an essential

difference in the physical situation when we have two

Fermi points instead one Fermi surface.

The author express his gratitude to I. Kolokolov and

E. Kats for numerous discussions on the subject.
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