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Landau theory for helical nematic phases
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We propose Landau phenomenology for the phase transition from the conventional nematic into the conical

helical orientationally non-uniform structure recently identified in liquid crystals formed by “banana”-shaped

molecules. The mean field predictions are mostly in agreement with experimental data. Based on the analogy

with de Gennes model, we argue that fluctuations of the order parameter turn the transition to the first order

phase transition rather than continuous one predicted by the mean-field theory. This conclusion is in agreement

with experimental observations. We discuss the new Goldstone mode to be observed in the low-temperature

phase.
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In the realm of liquid crystals one of the most ex-

citing and relatively recent result is discovery of a new

type of equilibrium nematic structure, see the papers

[1–5]. Especially surprising is the fact that the ob-

served new phases (termed twist-bend nematics, NTB)

exhibit helical (chiral) orientational ordering despite be-

ing formed from achiral molecules. The molecules of

the substances possessing NTB phases have a specific

“banana”-like shape. For comparison, known more than

a century conventional nematic liquid crystals (N) are

formed from rod-like or disk-like molecules. There exist

also chiral cholesteric phases locally equivalent to ne-

matics but possessing simple (orthogonal) helical struc-

tures with pitches in a few µm range. The cholesteric

structure appears as a result of relatively weak molecu-

lar chirality (that is why it has a relatively large pitch),

and the swirl direction of the spiral (left or right) is de-

termined by the sign of the molecular chirality. Unlike

this situation, the NTB nematics are formed as a result

of spontaneous chirality breaking, they have nanoscale

pitches.

Scanning the literature one can find a number of

theoretical works devoted to the twist-bend nematics

[6–12]. Majority of the works, starting from the influ-

ential paper [6], discuss the question how modulated

orientational structures can be formed in achiral sys-

tems. One can easily understand that the description

of the twist-bend nematics in terms of an orientational

elastic energy requires a pathological (not positively de-

fined) Frank elastic energy. An analysis in the frame-

work of such Frank energy can rationalize some exper-
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imental observations made for the NTB liquid crystals,

e.g., anomalously large flexoelectric coefficients [10], or

non-monotonous temperature dependence of the orien-

tational elastic moduli [7]. Note the paper [13] (which

almost gone unnoticed for liquid crystal community),

where the negative twist elasticity yielding to the spon-

taneous chiral symmetry breaking, has been suggested

based on the Van der Waals contribution into the Frank

elastic moduli. We note also the work [12], where NTB

phase elasticity with two director fields have been dis-

cussed within the positively defined conventional Frank

energy. In the recent preprint [14] the authors consider

how flexoelectricity combined with spontaneous polar

order (ferroelectricity) could stabilize conic spiral orien-

tational ordering. However, under natural Landau the-

ory assumptions the theory [14] yields to strongly biax-

ial and polar features of the NTB phase, apparently not

supported by experimental observations.

From our point of view, a description of the twist-

bend nematics in terms of an orientational elastic energy

needs a modification related to relatively short pitch of

the helicoidal structure. In the case the Frank moduli

for the short- scale component of the director field are

different from those for the long- scale component of the

director. Therefore the components should be treated in

terms of different elastic energies. In the paper we realize

the program keeping the notation n for the long-scale

component of the director and introducing its short-

scale component ϕ. The components have to be orthog-

onal, n ·ϕ = 0. Thus the vector ϕ has two independent

components.

The quantity ϕ plays a role of the order parame-

ter for the phase transition N–NTB. To analyze the
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system behavior in the vicinity of the transition, one

should introduce the Landau functional in terms of ϕ

including all relevant terms. The vector character of ϕ

leads to absence of odd terms in the Landau functional.

Therefore in the mean field approximation the N–NTB

transition is a continuous (second order) phase transi-

tion. Roughly, experimental data [2, 3, 5] and numeric

simulations [7, 9] can be positively confronted with the

mean-field theory predictions. However, certain experi-

ments [3, 5] clearly indicate that the N–NTB transition

is not a continuous one: there exists a two-phase coexis-

tence region where hysteresis phenomena are observed.

The experimental data, which we aware, suggest: (i) a

relatively weak first order N–NTB phase transition with

barely visible fluctuation effects from theNTB side [3, 5];

(ii) practically regular and smooth temperature depen-

dence of Frank elastic moduli [7, 8]. To explain the fea-

tures one has to go beyond the mean field approximation

and analyze fluctuational effects.

Experimentally, in the NTB phase the director n+ϕ

has the helical conic structure in space. By other words,

the short-scale component ϕ rotates around n at mov-

ing along the n-direction. Therefore the absolute value

of the vector ϕ gives the tilt angle for the conical spi-

ral. Because the conical helical structure has a certain

short pitch periodicity (we characterize it by the wave

vector q0), the order parameter ϕ is condensed at pass-

ing to the NTB phase at a finite wave vector q0 (ex-

perimentally on the order of a few inverse molecular

lengths). Thus the N–NTB phase transition is similar

to weak crystallization phase transitions [15] where the

mass density modulation appears at finite wave vectors.

Besides, the vector nature of the order parameter leads

to some peculiarities. Say, odd terms are absent in the

Landau functional and some additional terms should be

introduced there in comparison with the theory of weak

crystallization.

For the vector order parameter the Landau func-

tional contains second-order and fourth-order terms.

Taking into account the nature of the short-scale vector

field ϕ, one obtains the following functional
∫

dV

{

a

2
ϕ2 +

b3

8q20

[(

nink∂i∂k + q20
)

ϕ
]2

+

+
b1

2
(∇ϕ)2 + b⊥

2
δ⊥ij∂iϕ∂jϕ+

+
λ

24
ϕ4 − λ1

16q20
(ǫijkϕi∂jϕk)

2

}

, (1)

where δ⊥ij = δij −ninj . As usual, a ∝ T−Tc, where Tc is

the mean field transition temperature. The quantities b

are analogs of the Frank moduli for the order parameter

ϕ. The free energy (1) represents the minimal Landau

model for the N–NTB phase transition, catching all ob-

servable features of the NTB phase.

We first neglect fluctuations of the long-scale direc-

tor n and assume that it is a homogeneous field n0,

determining a preferred direction, n0 = (0, 0, 1). Then

the Landau functional (1) can be represented in a more

compact form by replacing the order parameter ϕ by its

complex counterpart ψ

ϕ = 2Re [ψ exp(iq0z)] . (2)

Unlike ϕ the complex field ψ is long-scale. It is perpen-

dicular to n0, ψ = (ψx, ψy, 0). In terms of the field ψ,

the Landau functional (1) is rewritten as

Fψ =

=

∫

dV

{

a|ψ|2+b⊥|∂⊥ψ|2+b3|∂zψ|2+b1|∇ · ψ|2 +

+
λ

4
(ψψ∗)2 − λ1

4

[

(ψψ∗)2 −ψ2(ψ∗)2
]

}

. (3)

If λ1 > 0 then below the phase transition (at a < 0)

minimization of the last term in Eq. (3) gives ψx = iψy
or ψx = −iψy (in both cases ψ2 = 0). That corresponds

just to the observed conical helical structure since then

ϕx = 2|ψx| cos(q0z + φ), ϕy = ±2|ψx| sin(q0z + φ),

(4)

where φ is the phase of ψx and signs “±” correspond to

two possible rotation directions of the conical structure.

It is worth noting one additional soft (Goldstone)

mode in the NTB phase related to long-scale variations

of the phase φ in the expression (4). Since the bulk en-

ergy is independent of a homogeneous phase shift, the

elastic energy related to variations of φ depends on its

gradient

Fel =

∫

dV

[

B⊥

2
(∂⊥φ)

2 +
B‖

2
(∂zφ)

2

]

. (5)

The energy (5) defined at scales larger than the correla-

tion length is analogous to the energy of the superfluid

component in a superfluid helium. Unlike the helium,

the energy (5) is anisotropic.

The mean-field (i.e., ignoring fluctuations) predic-

tions following from minimizing the energy (3) are stan-

dard. Namely, at T < Tc (in the low-temperature phase)

|ψx| ∝
√
Tc − T . The specific heat has the standard

Landau jump at the transition point, and the correla-

tion length diverges as (Tc − T )−1/2. In the mean field

approximation the moduli in Eq. (5) can be obtained

from the functional (3), they are B⊥ = 2(2b⊥+b1)|ψx|2,
B‖ = 4b3|ψx|2. Therefore both, B⊥ and B‖, are propor-

tional to Tc − T .
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To proceed further we pass to an analysis of fluc-

tuations. In our case, fluctuations of both components

of the director, n and ϕ, has to be taken into account.

The long-scale director will be written as n = n0 + δn,

where δn is a relatively weak deviation of n from its

average value. Next, it is convenient for us to keep the

field ψ as representing components of the order param-

eter ϕ perpendicular to n0. Then in the linear over δn

approximation the constraint n · ϕ = 0 leads to

ϕ⊥ = 2Re
[

ψeiq0z
]

, ϕ‖ = −δn · 2Re
[

ψeiq0z
]

(6)

instead of Eq. (2). Here the subscripts “‖” and “⊥” mark

the order parameter components parallel and perpendic-

ular to n0.

Substituting the expressions (6) into the gradient

terms of the Landau functional (1) and expanding over

δn, we find in the main approximation the following in-

teraction terms

Fint1 =

∫

dV b⊥
[

iq0δnα(∂αψ · ψ∗ −

−ψ · ∂αψ∗) + q20(δn)
2|ψ|2

]

, (7)

Fint2 =

∫

dV b1
{

iq0[(δn ·ψ)(∇ · ψ∗)−

− (δn · ψ∗)(∇ · ψ)] + q20(δn ·ψ)(δn · ψ∗)
}

. (8)

Note that the terms (7), (8) can be obtained from the

second order term (3) by passing to the “covariant”

derivative ∂iψ → (∂i + iq0δni)ψ. This is a consequence

of the rotational invariance of the system. The interac-

tion terms have to be added to the Landau functional

(3) and to the Frank energy

FFr =

∫

dV

{

K1

2
(∇ · δn)2 + K2

2
[∇⊥δni∇⊥δni −

− (∇ · δn)2] + K3

2
(∂zδn)

2

}

. (9)

The above contributions to the Landau functional

(3), (7)–(9) constitute the complete set of relevant

terms, that determine the fluctuation effects. The re-

gion of developed fluctuations (realized near the phase

transition) can be analyzed, say, in the framework of

the so-called ǫ-expansion [16] based on the renormaliza-

tion group (RG) procedure. There is the common belief

that the RG-flow draws the system towards a symmet-

ric state, in our case realized at b1 = 0. Then our model

becomes almost identical to the de Gennes model [17]

describing the N–SmA phase transition, apart from the

number of components of the order parameter: in our

case the order parameter is the two-component vector ψ

whereas the order parameter is scalar in the de Gennes

model. Fluctuation effects in the de Gennes model were

analyzed in the framework of the RG-procedure first in

[18] and then (for an arbitrary number of components

of the order parameter) in [19]. It was stated in the

work that the zero-charge fix point is stable only for

very large number of components of the order parame-

ter. Thus, one expects that the fluctuations destroy the

zero-charge fix point that physically means converting

the phase transition to the first order.

Thus, we expect that fluctuations of the director

turn the N–SmA phase transition to the first order

class that is in agreement with experimental data. In

the situation fluctuation effects can be observed only in

a narrow vicinity of the phase transition and not to be

strongly exhibited. Therefore the mean-field predictions

can cover the majority of the temperature interval near

the phase transition. This looks to be true for the exper-

imental data [2, 3, 7, 9, 5]. Especially important are X-

ray small-angle diffraction studies [4] directly manifest-

ing short-scale periodicity. The temperature dependence

of the diffraction peak width at T < Tc found in [4] cor-

responds to the mean-field prediction ∝ (Tc−T )1/2. The

cusp in the quantity observed near the phase transition

probably signals about fluctuation effects.

At the moment of writing this manuscript we are not

aware about any observation of the additional Goldstone

mode in the NTB phase related to long-scale variations

of the cone phase. Although optical scattering methods

could identify the mode, in practice, realization of such

experiment is not a simple issue. First, it requires a very

accurate selection of polarizations for the incident and

scattered beams polarized to exclude presumably much

larger scattering by conventional director modes. Sec-

ond, since the optical wave vector is smaller than the

inverse pitch period q0, the only second order scattering

(proportional to the square of the NTB order parameter

fluctuations) contributes to the light scattering inten-

sity. To the point, an external magnetic field which sup-

presses the conventional long-scale director fluctuations

can be very useful for the observation of the mode.
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