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We calculate the scattering length for transitions between edge states in two-
dimensional electron gas due to impurities short-range and long-range potential
and acoustical phonons ( deformation and piezoelectric interaction ), assuming
that the shape of the confining potentia! is arbitrary

Recent experiments '~ on two-dimensional electron gas (2DEG) in quantum
Hall regime have demonstrated that when nonideal current probes are used the
population of electron edge state can be unequal. In this case scattering between
edge states (propagating in the same direction) affects four-probe measurments
with nonideal voltage probe (the so-called anomalous quantum Hall effect).

Scattering of the edge states by irregularities of the boundary is discussed in
ref. 5%, by impurities and phonons in ref. 7. The confining potential U (y) in ref.
7 was assumed to be a parabolic one. However the parabolic potential has no
flat domain which corresponds to the interior of the sample. This is why there
exist no quasibulk states and one cannot reveal the properties of scattering which
appear when the Fermi level is close to a bulk Landau level. In this Letter we
calculate the scattering length of the edge states due to impurities and phonons
for an arbitrary potential U(y). Further, the impurity potential in ref 7 was
assumed to be of a short range, while it was shown both theoretically ®° and
experimentally 1%!! that for GaAs/Ga;...Al;As heterostructures the dominant
scattering mechanism is a long-range potential due to the remote ionized donors.
This is why in this Letter we calculate the impurity scattering length for the
long-range as well as for the short- range potential.

The wave function of the edge state is

Yni(r) ~ exp(ikz)xni(y)o(2) (1)

The location of the edge state with respect to the boundary of the 2DEG depends
on the wave vector k. When k — +oo state (1) transforms into a quasibulk
Landau state, and its energy E,;, — E, = hwgy(n + 1/2), where wy is the
cyclotron frequency. ¢(z) is the wave function of the spatial quantization of the
2DEG in the direction normal to the heterostructure interface.

Impurity scattering
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In the Born approximation one can calculate the elastic scattering length for
transition n — n'

1/lnant = (1/vpvm) / dg, < UU >, |Paw|?/2% 2)

where < UU >, is the 2D Fourier component of the scattering potential correla-
tion function taken at the 2DEG plane, q = (gz,qy), vn is the group velocity of
the edge state n,

Pt (@) = [ duxee (4) exp( i) xn (5 )

In (2) one should put ¢, = Skppt = |kn(E) — knt(E)| with E being the energy of
the initial state (see fig 1). The velocities v and functions y for states n and n’
correspond to the energy E = Er. Note that I, = l_,,.

As in the refs. 8° we assume that the ionized donors are situated in a narrow
layer separated from the 2DEG plane by the undoped spacer of the thickness zg.
Due to the electroneutrality the density of these donors (per cm~?) equals N,+ N,
where N, is the density of the 2DEG and N is the density of the depletion charge
layer on the GaAs side, the latest is assumed to be uniformly doped by the
acceptors with the net density ( per cm™3) N4¢. Then the correlation function
< UU >, can be written in the form °

2me?

<UU >p=| ——
! (“6(4)9

2
) [(Ns + Na) exp(—2q20) + Nac/2q] (4)
where ¢ is the lattice dielectric constant taken to be the same for GaAs and
GaAlAs, €,(g) = 1+ ¢,/q is the dielectric function of the 2DEG, g, is the screen-
ing parameter. The first term in (4) corresponds to the long-range part of the
scattering, while the second does to the short-range part.
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For the long-range scattering one can proceed further assuming that
6knnrzo > 1. In this case only small values of qy =~ (Skpp /zo)l/ 2 contribute
to the integral (2). Using this simplification one can calculate the scattering
length due to the long-range potential

l/l,I,’_m, = (1/I1) exp(—25km:zo)A3m: (5)

where Apnt = Ppp(0) and the nominal scattering length was defined
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1/Tp = 2532 [2x€? [he(vpvn )22 (N, + Na)(6knnt /20) %/ (Sknw + ¢5)F  (6)

Note that due to the small factor exp(—26knn120) in (5) the scattering can be
strongly suppressed compared to the case of zero magnetic field even in the case
when the spatial separation between edge channels dy,, = a},&k,,,,., where ap is
the magnetic length, is not large compared to ag. For the short-range scattering
Eq.(2) cannot be reduced to a more simple form without any assumption on the
confining potential.
Now we consider the case of the smooth potential U(y),when U'(y)ag < hwg.
In this case
Xk (¥) = n(y — ka¥y) (7)

Eni = En + U(ka¥)

where @, is the harmonic oscillator wave function. In the smooth potential the
overlap integral (3) can be calculated explicitly. Using (7) we have

AL = (27 nin't) " 1g 2 exp(—a?/2) (8)
where ¢ = (ynn'/an)? > 1. The short-range scattering length I5_, , becomes
1/15 o = (270) 712 (27€? /he(0nvm ) V2 [N ac /o 6knnt (Sknnt + 45)2| AL (9)
The group velocity in the smooth potential is
vnk = a4 U’ (kak) (10)

It follows from (8) that in the smooth potential the dominant transition are
n—n+l.

Acoustical phonon scattering

Since the sound velocity 8 < vy, v, the scattering is quasielastic, i.e. the
energy of the emitted or absorbed phonon hw < hwy. Hence, in the transition
n — n' (see fig.1) the change of k is 6k,,. The minimal energy of the phonon
is Appt = h8bkpy. In what follows we consider low temperetures T < Appr. In
this case, due to the phonon Bose factor and the Pauli exclusion principle the
phonon energy Aw is close to the threshold An,y. As a result the calculations
of the scattering length is greatly simplified. In the Born approximation for
deformation potential scattering (DA) 2

1 g2 2 ) k,zml ( e App )
- ot g (2 11).
lyn  27hps? Ann hvavy TF T T (1)

where
F(&,1) = (1/2)[In(1 + exp(§ — 1) + exp(§) In(1 +exp(—€ —n)]  (12)

Here S is the deformation potential constant, p is the crystal density, ¢ = E— Ef.
Velocity v, and function x, of the final state correspond to the energy of this
state E = E'. Equation (11) is valid if exp(e — A/T) < exp(A/T) or, in other
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words, if |€| < App and if e — Appt K Apye. In the first case iw — Apy ~ T whlle
in the second case hw — A, =~ € — Ap. It was also assumed that T > mas?
and Apy < hs/d, where d is the scale of function ©(z) .For GaAs/AlGaAs
heterostructure d = 3nm, 8 = 5x 10° cm/s , ms? = 0.1K and ks/d = 13K.Taking
Skpnt = a}}l, we have for H = 2T: ag = 18nm ,Apn = 2K and hwgyg = 39K. The
inverse scattering length (3) is to be averaged near Fermi energy:

<n—ml> /dE( afo) ,,..::(E) (13)

Function F grows exponentially with € for ¢ > 0 and since the average value is
due to hot electrons (¢ ~ A,y > T) rather than thermal electrons (¢ ~ T'). Since
Apn < hwy, one can put E = Ep. With the above mentioned assumptions for
DA-scattering

1 > 1 2 3 8 ( Ann' )
— = ——A; . (6knnra exp | — 14
<ln—m' DA (TDA)H nn ( nn! H) Untp! P T ( )
For piezoelectric PA-scattering 12 the calculations are similiar:
1 ' Ann')
P ] 1 15
(D oa ™ Goayy o Ot 0 (-5 19
Here we defined nominal scattering times
(1/7pa)y = B*/4xhpstay (18)

(1/tpa)H = (eﬂ)2/41rhpszag

where S is some piezoelectric modulus. For GaAs at H = 2T we have (fpa)m =
800ps and (7p4)g = 40ps (E? and §? taken from '?).The exponential suppression
of the scattering rate is because of the deficit of free final states below EF.

To consider the case of the smooth potential one have to substitute Eq.(7)
for Ap into (14) and (15). Comparing (14) or (15) with Eq.(7) in ref. 7 one can
see that the corresponding equations agree only in the exponential factors from
the overlap integral and from the deficit of the final states.

Discussion

Let us estimate [;_o in the simplest case when the Fermi level is far from
Landau levels (i.e. field H corresponds to quantum Hall plateau) and potential
U(y) is not smooth, i.e. §kjg =~ ag' and vy, vo ~ agwy =~ vp .To learn what is
the dominant mechanism of the impurity scattering it is sufficient to put all of
the characteristic lengths entering the pre-exponential factors in (5) and (9) to
be the same: ag = zp = k;l =¢;!=k ! =10 nm and Ny = N, = 1012 cm~2.
Comparing (5) and (9) one can see that the long-range scattering dominates if
the thickness of the spacer z; is less than

2y = (1/26kpp) In(k® /N ac) (17)

At N4c = 10 cm~3 we have z4 & 60 nm. To calculate I;_.o we take 5y10 & 1.5an,
v1 & v & vp/3, N, = N; = 3.5 x 10%cm™? (kp = 1.5 x 10°cm™),
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vr = 2.6 x 10°cm/s and ¢, = 2.0 x 108%cm™!. The rate of the long-range im-
purity scattering depends strongly on the value of the parameter §k,,129. Taking
zo = 40nm we have If ) ~ 3um at H = 2T and ¥, ~ 30um at H = 5T,
while the transport scattering length at H = O corresponding to the typical value
of the zero-field mobility 4 = 5 x 10° cm?/V s is ~ 5um. For DA-scattering
ly—o & 1000umexp(3K/T) and for PA-scattering I;o ~ 50umexp(3K/T). It
follows from these calculations that impurity scattering is only strongly sup-
pressed compared to H = 0, if H is high enough and the phonon scattering is
always weak. Note that the DA-phonon scattering length estimated in ref. 7 is
much shorter. The reason of the difference is mainly attributed to the another
choice of the electron- phonon interaction constant. The constant used in 7 is not
related to the deformation potential constant E.
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