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For an anisotropic layered superconductor we have calculated the magnetization
vs absolute value ¥ and orientation of the external magnetic field. It displays a
cusp at a field X = ¥,(#), where 4 is the angle between the field and the layers,
and a maximum at some characteristic field ¥ = ¥3(#) o (sin8)~! in agreement
with the experimental measurments by Zavaritsky N.V. and Zavaritsky V.N.

We predict the existence of an intermediate critical field ¥ = ¥,(8) o (sin8)~!
at which the perpendicular to the layers component of the magnetic induction
first penetrates the sample. The magnetic susceptibility x = AM/3X has a jump
at ¥ = X3(f). The jump is very small at § > 7™, where v is the anisotropy
coeflicient. In this range of angles one can observe a cusp on a graph of x vs ¥ at
¥ = M;. This prediction of theory is in good agreement with the experiment 2.

In isotropic superconductors of second type the magnetization vs magnetic
field has a maximum at the first critical field X.; as it was first shown by Abrikosov
1. At lower fields the field doesn’t penetrate the superconductor (the complete
Meissner-effect). In a recent experiment by N.V.Zavaritsky and V.N.Zavaritsky
2 the magnetization M vs magnetic field has been measured in a strongly
anisotropic and layered superconductor Bi 2212. The magnetization has dis-
played a cusp at lower critical field and an additional maximum at a higher field
depending on the angle # between the external magnetic field and the layers.In
this article we explain this phenomenon in the framework of a model of a homo-
geneous anisotropic superconductor. The layer structure leads to a cusp in the
graph of magnetization vs magnetic field at an intermediate value of the magnetic
field. However this cusp is very weakly pronounced in the total range of angles
except the very small ones. Instead one can observe a well pronounced cusp in a
graph of the magnetic susceptibility.

For a homogeneous anisotropic superconductor the magnetization vs magnetic
field has been calculated by Buzdin and Simonov 3. They have found the lower
critical field H,; and a maximum of magnetization at a higher field. In contrast
with their numerical calculations we account for the layer structure and apply
a simplified version of free energy which enables us to make a strightforward
analysis. Feinberg and Villard * were first to predict the locking of kinks in
a tilted magnetic field. Unfortunately their analysis did not incorporate the
demagnetizing factors which are of great importance for the problem. Besides
that they have not calculated the magnetization explicitly.

We start with an approximate expression for the free energy of an anisotropic
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layered superconductor °:

2
p=0  HVEBi+v B Hi|Bi]| (1)

8x 4x 4x

where B, and B, are the components of the magnetic induction B parallel
and perpendicular to the layers respectively, H; and H are the characteristic
magnetic fields logarithmically varying with the magnetic field and the angle,
= "L:‘f; is the ratio of effective masses. The second term at the r.h.s. of equa-
tion (1) is due to Campbell et al. 8. Roughly speaking this is a contribution of
a homogeneous anisotropic superconductor. The third term is due to kinks on
tilted vortices (Ivliev et al. 7). The free energy (1) has a logarithmic accuracy
(In %)‘1 at low magnetic fields o H; o 7H; and a much higher accuracy o« Hy /¥
in the intermediate range of fields H; < ¥ <« Hs.
The inner field H can be found by differentiating :
oF

H=4x 3B (2)
For an ellipsoidal shape of a sample the magnetostatic problem can be solved ex-
plicitly resulting in the following relationship between the external field X vector
and the magnetic induction B

¥=#B+(1-#)H=B —4x(1 - A)M (3)

Further we consider a symmetric case when the ellipsoid axes coinside with the
crystallographic ones. Then the nondiagonal components of the demagnetizing
tensor are equal to zero. Differentiating the free energy (1) and substltutmg to
equation (3) we get

Nz = Bz + (1 - nzz)"—l—\/-fI;—l_—p_za (4)

vHyp

e

He = By + (1 — ngs)( + HasignB,), (5)

where p = 4B,/ B;,.

We find the region of the complete Meissner effect putting B, = B, = 0. Jet
the values p = vB,/ B, and ¢ = sign B, remain undefined varying in the intervals:
—1 < p,o < 1. So this region notified as region 1 is defined parametrically by
equations

H
)(z == (1 - nzz)ﬁ

¥y = (1= ne) (22 | Hog).

Vs

The boundaries of this region are two straight lines

B, = i(1 - n::)Hl, l B, |S (1 - nx:)Hz
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Fig.1. The phase diagram of a lay-
8=0 ered superconductor in the X., ¥,
plane. See explanations in the text

Fig.2. The schematic graph of the parallel mag-
netization vs magnetic field

and two ellipses

X2 [Hs £ (1 = nee) Hy)? .
(1- "zz)zﬁrl2 * (1- ""1)2('7[{1)2 B

(see Fig.i). Besides there exists the region of partial Meissner effect, where
the parallel component of the induction B, penetrates while the perpendicular
component B, does not (region 2). This region lays outside region 1 and between
two straight lines

)(, - :f:(l - ﬂ,,)Hz

In the experiment by Zavaritsky and Zavaritsky ? the angle § between layers
and the external magnetic field has been fixed and the parallel magnetization
M| vs the absolute value of magnetic field ¥ has been measured. We present
here the analytical caletilations of M, as well as the perpendicular component of
magnetization M based on equations (4) and (5).

In the region 1 we get obvious formulae

M; = X ((cosﬂ)2 + (sinﬂ)z) (6)

dx \1-n,;, 1-n,,

M, = )(sin0c050( 1. 1 ) (7)

4x l—n,,_l—n,,

At a fixed angle § the complete Meissner effect proceeds till ¥ = r=(01-
nzz)H1/ cos 6 provided 9 < 0,, where
(1 - n',)Hz .

0. = arctan (1-n..)H,
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As it is shown in Fig.1, a straight line corresponding to a fixed value of § < 8,
crosses first the vertical line ¥ = ¥; and then the horizontal line ¥, = (1 —
n,.)H,. Between these two crossing points the magnetization obeys the following
equations:

sin §)?
My = -4 (ch 0+x§_n)"), (®
i = L (<ruamo s xS0 .

A simple calculation shows the existence of the parallel magnetic susceptibili-

tyjump Ay at ¥ = Xo:

[H2(1 — nzz)cosf — Hy(1 — nzz)sin ] sind
dx H1v* (1 — n,,)? ’

Axj = (10)
For § < 1 the ratio Ax/x ~ (1 +~8)~!. Thus the cusp is well pronounced at
small § < v~ ! and very weakly pronounced at # > v~ 1. The corresponding value
of 8 for Bi 2212 is about 1°. Neglecting the jump of x one finds an approximate
expression

1 cos §
M) = - [

ax(1 - n,;) V(HL(1 = 1)) — (W sind — (1 - nes) Ha)+

X (sin 0)2] . (11)

Equation (11) is valid at 40 > 1 and in the range of fields X < ¥ < ¥z =
(vHy + H,)/sind. It displays a spurious singularity at ¥ = ¥3. The expression
(11) is invalid in a small vicinity oc (78)~/3 of the point ¥ = Xs. In this range
the parallel magnetization has a maximum and then decreases slowly till X2 (see
Fig.2).

Returning to the point ¥ = X2 we find from equation (11) a jump of the
parallel susceptibility derivative

dxj _ cosb(sinf)?

A AN 4x[(1 — ng ) vHy|*

(12)

The relative jump A%}l / %l is of the order of unity. For the completness we

write down the expression for the transverse magnetization:

_ sinf _ V(1Hi(1 - ny))? - (¥ sin8 — (1 — n,,) Ha)?
M, = 47!'(1 — n,,) M cos§ (1 - "zz)’Y

We have elaborated the experimental data ? for magnetization vs field to find
the magnetic susceptibility x)|. Cusps in graphs of x| vs X are clearly seen in the
tilt angle range from 15 till 80°, though the general calculation is rather poor.
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The external magnetic field corresponding to the cusp at a fixed angle # has been
multiplied by sind. The result is shown in Fig.3. According to the theory it
should be a constant equal to (1 — n,,)Hy. We observe good agreement between
theory and experiment. So the experiment ? can be considered as the first clear
evidence of kinks appearance.

For the completeness we show z-component of the external magnetic field at
maxima of the parallel magnetization (1 - n,,)(vH; + H;) due to [2]. From the
experimental data we find H; =5 30e, and H, = 750e.

We are indebted to N.V.Zavaritsky and V.N.Zavaritsky for stimulating dis-
cussions and submission of the original experimental data.
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