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It is shown how to construct Keldysh diagram technique for pseudo-particle approach to the Hubbard

model. We propose self consistent equations for pseudo particle and electron Green functions in Keldysh dia-

gram technique. Nonlocal effects (spatial dispersion) are included in single impurity problem in this method.

Thus we can get rid of the artificial central peak (of Kondo type) in the density of states which is inevitable

in Dynamical Mean Field Theory (DMFT). The changes in the density of states for 2D Hubbard model due

to variation of Coulomb repulsion U and electron concentration are analyzed.
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Materials with correlated electrons demonstrate a

great variety of unusual interesting phenomena. But up

to now the correct theoretical description of their prop-

erties encounters with great difficulties. One of the main

methods used nowdays is the so called DMFT (dynami-

cal mean field theory) [1, 2]. In spite of wide popularity

of this method, it has some considerable shortcomings.

DMFT is formulated in the framework of temperature

diagram technique, so one needs to make analytical con-

tinuation procedure to calculate density of states; a non-

physical artifact peak in the density of states appears

inside dielectric gap for the Hubbard model; computa-

tions are very cumbersome and require much time.

One of the alternative methods is based on introduc-

ing non-physical pseudo-particles (“slave-particles”) to

describe independently each state in correlated system

[3–5]. This method requires exact constraint on pseudo-

particle numbers at each site which results in strong

modification of usual diagram technique. To avoid dif-

ficulties of this modified diagram technique some au-

thors used mean field approximation in functional inte-

gral formulation of this method [4, 5, 2]. But the validity

of obtained results is a matter of question. An attempt

to generalize pseudo-particle method for nonequilibrium

Anderson model was made in papers [6–8]. These au-

thors obtained results only for a few lowest order dia-

grams or for non-crossing approximation. The general

rules for constructing diagram series in Keldysh tech-

nique for pseudo particles method are absent.

1)e-mail: nsmaslova@gmail.com

In the present paper we show how to construct

Keldysh diagram technique [9] for the pseudo-particle

(PP) approach to the Hubbard model. Understanding

of the general rules of PP diagram technique allowed us

to suggest self-consistent scheme of PP line calculations

and to obtain reasonable results for electron density of

states for the Hubbard model with different Coulomb

repulsion values and arbitrary electron concentration.

Hamiltonian of the Hubbard model has the well

known form:

Ĥ =
∑

ijσ

tijc
+
iσcjσ +

∑

iσ

Uniσni−σ +
∑

iσ

(εi − µ)c+iσciσ,

(1)

where c+iσ is electron creation operator, εi – on site elec-

tron energy, µ – chemical potential, tij – hopping matrix

element, and U – on site Coulomb repulsion. One can

introduce non-physical particles each of them is assigned

to a definite single site state [3, 4]. Creation operators

of these PP correspond to appearance of the following

physical states:

b+ ⇒ |0〉, f+
σ ⇒ c+σ |0〉, d+ ⇒ c+↑ c

+
↓ |0〉, (2)

where b and d are Bose and f – Fermi PP. Unphysical

states are eliminated by the constraint for each site:

N̂0 =
∑

σ

f+
σ fσ + b+b + d+d = 1. (3)

Creation operator of a physical electron is expressed as

c+σ = f+
σ b + d+f−σ. (4)
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In this PP representation the on-site Hamiltonian with

Coulomb interaction between electrons looks like a

Hamiltonian for non-interacting PP:

Ĥ0 =
∑

i

[∑

σ

εf+
iσfiσ + (2ε+ U) d+i di + 0 • b+i bi

]
.

(5)

From now on all single electron energies are measured

from the chemical potential µ. Hopping between the

sites now looks like interaction between pseudo parti-

cles:

Ĥint =
∑

ijσ

tij(f
+
iσbi + d+i fi−σ)(fjσb

+
j + djf

+
j−σ). (6)

Any physical state should contain only one pseudo par-

ticle. In this subspace determined by the constraint (3)

the mapping is exact. The projection to this pseudo par-

ticle subspace can be done by the following trick [3]. We

add some large positive constants λi to PP energies at

all sites:

Ĥ0
λ=

∑

i

[∑

σ

(ε+λi)f
+
σ fσ+λib

+b+(2ε+U+λi)d
+d

]
.

(7)

In the present paper we consider thermodynamics aver-

ages as initial basic elements for Keldysh diagram tech-

nique. Then states with k PP on site “i” have weight

e−kλi/T for large λi (T is the temperature). So only

single PP states on any site “i” can be retained in any

average 〈. . .〉 by the following operation:

lim
λi→∞

{eλi/T 〈. . .〉}. (8)

States with two or more PP have exponentially small

weights and vanish in the limit λi → ∞. The unphysi-

cal “vacuum state” with no PP is excluded because the

Hamiltonian and any physical operator are normally or-

dered combinations of PP operators. After this oper-

ation PP occupation numbers for each site are deter-

mined as:

n0 = (Z0)
−1 lim

λ→∞
eλ/Tnλ =

e−ε/T

1 + 2e−ε/T + e−(2ε+U)/T
,

b0 = (Z0)
−1 lim

λ→∞
eλ/T bλ =

1

1 + 2e−ε/T + e−(2ε+U)/T

d0 = (Z0)
−1 lim

λ→∞
eλ/Tdλ =

e−(2ε+U)/T

1 + 2e−ε/T + e−(2ε+U)/T
,

(9)

where

Z0 = SpN=1

(
e−βĤ

)
= lim

λ→∞
eβλSp

[
e−βĤλN̂0

]
. (10)

This PP occupation numbers satisfy the required con-

straint:

b0 + 2n0 + d0 = 1. (11)

Electron spectrum and density of states can be obtained

from usual Green functions:

Gα,β
σij (t, t

′) = −i〈Tcciσ(t), c
+
jσ(t

′)〉, (12)

where Tc means ordering on the Keldysh contour [9].

Single electron Green functions look like two particle

objects in PP representation, for example:

G−−
σij (t, t

′) =

=− i〈Tb+i fiσ(t), f
+
jσbj(t

′)〉−i〈Tf+
−σid(t)i, d

+
j f−σj(t

′)〉−

− i〈Tf+
−σid(t)i, f

+
σjbj(t

′)〉 − i〈Tb+i fσi(t), d
+
j f−σj(t

′)〉.

(13)

Before taking the limit λ → ∞ the usual diagram rules

are valid. All diagrams include PP Green functions as if

they were real particles. For example “lesser” PP Green

functions are

G<
fσ(t− t′) = inλ

fe
−i(ε+λ)(t−t′),

G<
b (t− t′) = −ibλe−iλ(t−t′),

G<
d (t− t′) = −idλe−i(2ε+U+λ)(t−t′).

(14)

Retarded on-site electron Green function GR
ii without

intersite transitions is a sum of two simple closed loops

(polarization operators) in PP representation (Fig. 1).

Fig. 1. Retarded on-site electron Green function G
R
ii . Solid

line corresponds to pseudo-fermion function, wavy line –

to empty-site pseudo-boson and double wavy line – to

double-occupied site pseudo-boson

After projection to the physical subspace described

above we have:

GR
iiσ0(t− t′) =

=i

∫
dω1

2π
[B<

0 (t′−t)NR
σ0(t−t′) +BA

0 (t
′−t)N<

σ0(t−t′)−

−N<
−σ0(t

′ − t)DR
0 (t− t′)−NA

−σ(t
′ − t)D<(t− t′)].

(15)
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Where PP Green functions B,N,D appear instead ini-

tial PP functions Gb, Gf , Gd after the projection proce-

dure:

N<
0σ(t− t′) = in0e

−iε(t−t′), B<
0 (t− t′) = −ib0,

D<
0 (t− t′) = −id0e

−i(2ε+U)(t−t′).

(16)

and n0, b0, d0 are given by Eq. (9). Retarded PP func-

tions are:

NR
0σ(t− t′) = −iθ(t− t′)e−iε(t−t′)BR

0 (t− t′) =

= −iθ(t− t′),

DR
0 (t− t′) = −iθ(t− t′)e−i(2ε+U)(t−t′).

(17)

After Fourier transformation we obtain simple Green

function for the single-site Hubbard model:

GR
0 (ω) =

n0 + b0
ω − ε+ iδ

+
n0 + d0

ω − ε− U + iδ
. (18)

Intersite transitions (6) correspond to four types of

the two particle vertexes connecting closed loops for

neighboring sites. So any diagram consists of some num-

ber of closed single-site PP loops connected with inter-

site hopping lines tij . Before the projection procedure

is made any PP “lesser” Green function (14) is propor-

tional to exp(−λi/T ). So after taking the limit λi → ∞

only diagrams with one “lesser” Green PP function at a

given site are retained. This fact gives rise to the follow-

ing rules for constructing the diagrams with full account

of the constraint on the PP total number: 1) Only one

pseudo-particle loop for any site can appear in a dia-

gram; 2) only one PP "lesser"function in any loop can

be present. It is substituted by renormalized PP occupa-

tion number (9); 3) only R and A parts of any other PP

Green functions are retained in any on-site loop; 4) oscil-

lating multipliers exp(−iλit) are cancelled in any vertex

and should be omitted.

We can construct perturbation series in intersite

hopping tij . First order diagrams are proportional to

t2ij/ε
2 or t2ij/(ε+U)2. These diagrams consist of two PP

loops for neighboring sites connected with two hopping

vertexes. One of these diagrams is shown in Fig. 2. Such

diagrams can be considered as the first terms in renor-

malization series for PP line and can be reformulated

with the help of “external electron line” (Fig. 2b):

G0αβ
el (ω) =

∑

j

tij G
0αβ
jj (ω) tji. (19)

If electron only once leaves a given site and returns

back but we sum up all perturbation series for the other

sites, then this “external electron line” can be written in

the same way

Gαβ
el (ω) =

∑

il

til G
αβ
lm(ω) tmi, (20)

Fig. 2. (a) – Example of the first order diagram for electron

on-site Green function. (b) – The same diagram in terms

of “external electron line” G
0αβ

el (ω) =
∑

j

tij G
0αβ
jj (ω) tji

where Gαβ
lm is the exact electron Green function for the

problem with excluded given site i (Fig. 3).

Fig. 3. Origin of self-consistent “external electron line”

G
αβ

el (ω) =
∑

il

til G
αβ

lm(ω) tmi. Hopping from site i, propa-

gation in the surroundings and hopping back

Besides the diagrams which look like renormalization

of PP lines there are also vertex corrections diagrams

(Fig. 4). Calculations in the lowest orders show that ver-

Fig. 4. Example of vertex corrections which are small com-

pared to diagrams with renormalized PP lines

tex corrections are less important then diagrams with

renormalized PP lines, because they contain no secular

divergences.

So we propose self-consistent scheme for calculating

electron Green functions based on renormalization of

PP lines only. Since in any PP loop only one PP occu-

pation number is present the structure of any diagram

for on-site retarded electron Green function is strictly

determined. Except the only one PP occupation num-

ber all other PP lines are retarded or advanced functions

ordered as it is shown in Fig. 5.
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Fig. 5. The structure of diagrams for on-site retarded elec-

tron Green function. “n” denotes the only PP occupation

number determined by Eqs. (9)

The PP line, which contains PP ocupation number,

will be called PP “lesser” Green function. And the other

one, which contains only retarded or advanced PP lines,

will be called PP retarded or advanced Green functions.

Let us notice that from now on we use the term PP

Green function for an object which is some diagram se-

ries (upper or lower line in Fig. 5) for which we can con-

struct Dyson equation, but strictly speaking sum of all

diagrams for these lines are not usual particle Green

functions.

Summing up all diagrams for PP retarded (ad-

vanced) Green function arising from diagrams like the

first order correction (Fig. 2) we obtain Dyson equations

in frequency representation:

NR
σ (ω) = N0R

σ (ω) +N0R
σ (ω)ΣR

Nσ(ω)N
R
σ (ω),

BR
σ (ω) = B0R(ω) + B0R(ω)ΣR

B(ω)B
R(ω), (21)

DR
σ (ω) = D0R(ω) +D0R(ω)ΣR

D(ω)DR(ω),

where N,B,D stand for the single-occupied site

fermion, empty-site boson and double-occupied site

boson respectively. Zero order functions N0, B0, D0 are

given by Eq. (17 ).

We use an approximation in which self energy parts

ΣR are determined by:

ΣR
Nσ(ω) = i

∑

σ

∫
dω1

2π
[Gel>

σ (ω1)B
R(ω − ω1) +

+ Gel<
−σ (ω1)D

R(ω + ω1)],

ΣR
B(ω) = i

∑

σ

∫
dω1

2π
Gel<
σ (ω1)N

R
σ (ω + ω1), (22)

ΣR
D(ω) = i

∑

σ

∫
dω1

2π
Gel>
−σ (ω1)N

R
σ (ω − ω1),

where function G
<(>)
σ in k, ω representation is:

G<(>)
σ (ω) =

∑

k

ε2k G
<(>)
elσ (ω, k). (23)

Electron Green functions in equilibrium satisfy the fol-

lowing relations:

G<
elσ(ω, k) = −2i f(ω)ImGR

elσ(ω, k), (24)

G>
elσ(ω, k) = −2i[f(ω)− 1]ImGR

elσ(ω, k). (25)

And retarded electron Green function GR
elσ should be

determined later self-consistently.

Dyson equations with self-energy parts (22) mean

that we sum up diagram series of the type shown in

Fig. 6. Of course this is an approximation because we

Fig. 6. Example of self-energy parts used in the sug-

gested approximation. Dashed line – “external electron

line” Eq. (23)

take into consideration interaction on a given site but re-

place complicated correlated electron transport through

all other sites by a sum of uncorrelated processes (hop-

ping from the site, propagation in the surroundings and

hopping back). This propagation is described by some

averaged single electron function which in self-consistent

procedure should be determined by means of the same

electron function calculated for our given site. The idea

in some sense resembles the dynamical mean field the-

ory (DMFT) though the approach itself and all basic

equations are quite different.

Let us point out that retarded (advanced) PP self en-

ergies contains no PP occupation numbers, thus these

self energies are incomplete compared to the case of real

particles: the part with “lesser” PP functions is omitted.

So, in spite of the Dyson equation for this diagram series

has the usual form, it cannot be regarded as an equa-

tion for some real particle Green function. If we know

GR
elσ the system of equations (21), (22) is complete and

allows to calculate self-consistently all PP retarded or

advanced functions.
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Fig. 7. Electron density of states (solid line) for the half filling case and different U (upper panels): density of states for the

band with no interaction is shown by the dashed line, U is measured in units of intersite hopping tij . In the lower raw PP

“lesser” functions are depicted for U = 12t. They show the relative fraction of empty (dotted line), single-occupied (solid line),

and double occupied (dashed line) sites. The right figure – enlarged part of the left one to demonstrate the small admixture

of empty and double-occupied sites

Dyson equation for PP “lesser” Green function (lines

with one occupation PP number) can be written in a

similar way:

N<
σ (ω) =

= NR
σ (ω)

[
Σ<

Nσ(ω) + (NR
0 )−1N0<

σ (ω)(NA
0 )−1

]
NA

σ (ω),

B<(ω) =

= BR(ω)
[
Σ<

B(ω) + (BR
0 )

−1B0<(ω)(BA
0 )

−1
]
BA(ω),

D<(ω) =

= DR(ω)
[
Σ<

D(ω) + (DR
0 )

−1D0<(ω)(DA
0 )

−1
]
DA(ω).

(26)

And “lesser” self energy parts look like:

Σ<
Nσ(ω) =

=i

∫
dω1

2π
[Gel<

σ (ω1)B
<(ω − ω1)+Gel>

−σ (ω1)D
<(ω + ω1)],

Σ<
B(ω) = i

∑

σ

∫
dω1

2π
Gel>
σ (ω1)N

<(ω + ω1),

Σ<
D(ω) = i

∑

σ

∫
dω1

2π
Gel<
−σ (ω1)N

<
σ (ω − ω1).

(27)

The system of equations (26), (27) is also complete since

PP retarded and advanced functions have been calcu-

lated already. So all PP lesser functions can be deter-

mined self-consistently from these equations.

Now we can calculate the on-site electron Green

function from the same diagrams as in Fig. 1 but with

renormalized (“dressed”) PP Green functions:

GRel
iiσ (ω) =

= i

∫
dω1

2π

[
B<(ω1)N

R
σ (ω + ω1) +BA(ω1)N

<
σ (ω + ω1) −

−N<
−σ(ω1)D

R(ω + ω1)−NA
−σ(ω1)D

<(ω + ω1)
]
.

(28)

In this paper within the simplest approximation we shall

consider the usual relation between on-site and band

electron Green functions:

GR
elσ(ω, k) =

1

(GR el
iiσ )−1(ω)− εk

. (29)

Since all PP functions in Eq. (28) can be calculated if

we know electron Green function GR
elσ(ω, k), we get to a

self-consistent scheme of calculations. The steps are the

following:

1) from zero-order on-site Green function Eq. (18)

we calculate electron Green function Eq. (29) and “ex-

ternal line electron function” Eq. (23) for PP diagrams;
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Fig. 8. Electron density of states (solid line) for almost empty (a) and almost filled (b) band (upper panels). Vertical line is

the position of the chemical potential. Lower raw – corresponding relative fractions of empty (dotted line), single-occupied

(solid line), and double occupied (dashed line) sites

2) perform self-consistent calculations first of R, A,

and then of “lesser” PP functions.

3) determine new on-site electron Green function

from Eq. (28) and proceed with new band electron (29)

and “external line electron” (23) functions.

This procedure should be repeated until the stable

solution is reached.

In these calculations we encounter with some differ-

ences from usual calculations with real particle Green

functions. The functions which are called PP Green

functions are just some diagram subseries so their prop-

erties are not obligatory the same as for the real particle

Green functions. Their spectral weight is not automat-

ically normalized for example. Our scheme of calcula-

tions gives us the shape of electron density of state but

not its absolute value. So we require that retarded elec-

tron Green function should be normalized as usual

−
1

π

∫
dω

∑

k

ImGR
elσ(ω, k) = 1.

Results. The shape of the electron density of states

depends on the value of Coulomb interaction and elec-

tron concentration. We present here results of calcu-

lations for 2D square lattice. For the half filling case

(µ = ε+ U/2) we see that two Hubbard subbands with

dielectric gap between them begin to form for Coulomb

repulsion comparable with the bandwidth. With further

increasing of Coulomb repulsion the two-subband struc-

ture with well defined gap is more and more pronounced

(Fig. 7). Let us stress that there is no artifact central

peak which usually appears in DMFT calculations. Van-

Hove singularity of 2D noninteracting electron band is

completely smoothed for large enough U due to inter-

action.

If the band is almost empty the two-subband struc-

ture is nearly destroyed and finally the density of states

for noninteracting electron band is restored (Fig. 8a).

Similar picture is observed for almost filled band

(Fig. 8b). The the density of states for noninteracting

electron band is again restored but it is shifted up in

energy by the value of the Coulomb interaction. In both

these cases Van-Hove singularity of 2D noninteracting

electron band appears in the density of states. Presented

scheme allows to find density of states for any interme-

diate electron concentration. The modification of two-

band Hubbard structure with concentration changes is

shown in Fig. 9.

Though “lesser” PP functions are not Green func-

tions of real particles, nevertheless their relative val-

ues reflect ratio between the numbers of empty, single-
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Fig. 9. Electron density of states (solid line) for intermediate concentrations (upper panels). (a) – Concentration is less. (b) –

Greater than half filling. Lower raw – corresponding relative fractions of differently occupied sites. The notations are the

same as in Figs. 7 and 8

occupied and double-occupied sites. We see that these

functions quite reasonably describe the physical situa-

tion for different electron concentrations and Coulomb

repulsion values. It is very important that self-consistent

solution for “lesser” PP functions are independent on

initial PP occupation numbers n0, b0, d0 (as it should

be in non-perturbative calculations in Keldysh tech-

nique). At half-filling most sites are single-occupied as

it is evident from Fig. 7: “lesser” function of pseudo-

fermion dominates and admixture of two pseudo-bosons

for empty and double-occupied sites is negligible. For al-

most empty (or almost filled) band vice versa the weight

of “empty”-pseudo-boson (or double-occupied-boson) is

the largest one and fraction of single-occupied sites is

small. When the concentration of electrons increases

from empty to completely filled band we can analyze

how the fraction of differently occupied sites changes

(Fig. 9).

The external electron line Gσ(ω) is similar to elec-

tron self energy for on-site Green function in Hubbard-

III approximation [10]. But in Hubbard-III approxima-

tion the self energy is multiplied by initial (fixed) oc-

cupation electron numbers. The present approach takes

into account self consistent changes of electron on-site

occupation due to Coulomb interaction via PP “lesser”

functions calculations.

We should mention that this approach works well if

parameter t2/(ε+U)2 or t2/ε2 is less than unity. So this

simple approximation cannot give correct result for the

half filling situation and small U when both parameters

become greater than unity.

Conclusions. We suggested a new approach to de-

scribe properties of correlated electron systems based

on pseudo-particle Keldysh diagram technique. For the

first time consistent non-perturbative calculations in

pseudo-particle technique was performed. For the Hub-

bard model pseudo-particle technique can give reason-

able results for electron density of states for different

electron concentration and Coulomb repulsion values.

Note that DMFT can be hardly applied to arbitrary

concentrations different from the half filling case. Even

at half-filling DMFT always gives artificial central peak

in the density of states which does not appear in our

method.

It is possible to calculate self consistently “lesser”

functions for pseudo particles which are independent on

their initial occupation numbers. These “lesser” func-

tions quite reasonably reproduce the relative fractions

of empty, single- and double-occupied sites.

The main advantages of this approach are that it al-

lows to work in real time representation and does not

need analytical continuation as in temperature diagram
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technique. Keldysh technique can be applied for any

temperatures as well as for nonequilibrium and even

nonstationary situation. At last compared to DMFT our

calculations are very fast.
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