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We investigated the tunneling current peculiarities in the system of two coupled by means of the external

field quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations. It was

found that tuning of the Rabi frequency induces fast multiple tunneling current switching and leads to the

negative tunneling conductivity. Special role of multi-electrons states was demonstrated. Moreover we revealed

conditions for bistable behavior of the tunneling current in the coupled QDs with Coulomb correlations.
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1. Introduction. Electron tunneling through the

system of coupled quantum dots in the presence of

strong Coulomb correlations seems to be one of the

most interesting and important problems in the physics

of nanostructures. Tunneling current changes localized

states electron filling numbers, consequently, the spec-

trum and electron density of states are also modified

due to Coulomb interaction of localized electrons.

The present day experimental technique gives pos-

sibility to create QDs with a given set of parameters

and to produce coupled QDs with different spatial ge-

ometries [1, 2], which give an opportunity to analyze

non-equilibrium and non-stationary effects in the small

size correlated structures [3–9]. Thereby the main effort

in the physics of QDs is devoted to the investigation of

non-equilibrium charge states and different spin config-

urations due to the electrons tunneling [10–12] through

the system of coupled QDs in the presence of strong

Coulomb interaction.

Double QDs systems behavior is recently under care-

ful investigation because of the variable inter-dot tun-

neling coupling [13, 14], which is the physical reason for

non-linearity formation and consequently for existence

of such phenomena as bifurcations [15, 16] and bistabil-

ity [11, 17]. That’s why double QDs can be applied for

logic gates fabrication based on the effect of ultra-fast

switching between intrinsic stable states.

In the present paper we consider electron tunnel-

ing through the QDs with Coulomb correlations in the

regime when coupling between the dots is carried out by

means of the external field with Rabi frequency Ω. We
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analyzed tunneling current behavior in terms of pseudo

operators with constraint on possible physical states

[18–20, 12]. For large values of applied bias Kondo effect

is not essential so we neglect any correlations between

electron states in the QDs and in the leads. This approx-

imation allows to describe correctly non-equilibrium oc-

cupation of any single- and multi-electron state due to

the tunneling processes.

We revealed the presence of negative tunneling con-

ductivity in certain ranges of the applied bias voltage

and analyzed the multiple tunneling current switching

caused by the Rabi frequency tuning.

2. Suggested model. We consider a system of cou-

pled QDs with the single particle levels ε̃1, ε̃2 connected

to the two leads. The Hamiltonian can be written as:

Ĥ =
∑

σ

c+1σc1σ ε̃1 +
∑

σ

c+2σc2σ ε̃2 + U1n̂1σn̂1−σ +

+ U2n̂2σn̂2−σ +
∑

σ

Ω

2
(c+1σc2σ + c+2σc1σ), (1)

where operator clσ creates an electron in the dot l with

spin σ, ε̃l is the energy of the single electron level in

the dot l and inter-dot coupling is realized by means of

the external field with Rabi frequency Ω, nlσ = c+lσclσ,

and U1(2) is the on-site Coulomb repulsion of localized

electrons. When the coupling between QDs exceeds the

value of interaction with the leads, one has to use the

basis of exact eigenfunctions and eigenvalues of the cou-

pled QDs without interaction with the leads. In this case

all energies of single- and multi-electron states are well

known.

• one electron in the system: two single electron

states with the wave function
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ψσi = µi · |0 ↑〉|00〉+ νi · |00〉|0 ↑〉. (2)

Single electron energies and coefficients µi and νi can

be found as an eigenvalues and eigenvectors of matrix:
(

ε1 −Ω/2

−Ω/2 ε2

)
; (3)

• two electrons in the system: two states with the

same spin σσ and −σ − σ and four two-electron states

with the opposite spins σ − σ with the wave function:

ψσ−σj = αj · | ↑↓〉|00〉+ βj · | ↓ 0〉|0 ↑〉+

+ γj · |0 ↑〉| ↓ 0〉+ δj · |00〉| ↑↓〉. (4)

Two electron energies and coefficients αj , βj , γj , and

δj are the eigenvalues and eigenvectors of matrix:



2ε1 + U1 −Ω/2 −Ω/2 0

−Ω/2 ε1 + ε2 0 −Ω/2

−Ω/2 0 ε1 + ε2 0

0 −Ω/2 −Ω/2 2ε2 + U2




; (5)

• three electrons in the system: two three-electron

states with the wave function

ψσσ−σm = pm| ↑↓〉| ↑〉+ qm| ↑〉| ↑↓〉,

m = s, a. (6)

Three electron energies and coefficients pm and Qm
can be found as an eigenvalues and eigenvectors of ma-

trix:
(
2ε1 + ε2 + U1 −Ω/2

−Ω/2 2ε2 + ε1 + U2

)
; (7)

• four electrons in the system: one four-electron state

with energy EIV = 2ε1+2ε2+U1+U2 and wave function

ψ = | ↑↓〉| ↑↓〉. (8)

If coupled QDs are connected with the leads of the

tunneling contact the number of electrons in the dots

changes due to the tunneling processes. Transitions be-

tween the states with different number of electrons in

the two interacting QDs can be analyzed in terms of

pseudo-particle operators with constraint on the phys-

ical states (the number of pseudo-particles). Conse-

quently, the electron operator c+σl (l = 1, 2) can be writ-

ten in terms of pseudo-particle operators as:

c+σl =
∑

i

Xσl
i f

+
σib+

∑

j,i

Y σ−σlji d+σ−σj fi−σ +

+
∑

i

Y σσli d+σσfiσ +
∑

m,j

Zσσ−σlmj ψ+
m−σd

σ−σ
j +

+
∑

m

Zσ−σ−σlm ψ+
mσd

−σ−σ +
∑

m

W σ−σ−σl
m ϕ+ψmσ, (9)

where f+
σ (fσ) and ψ+

σ (ψσ) are pseudo-fermion creation

(annihilation) operators for the electronic states with

one and three electrons correspondingly, b+(b), d+σ (dσ),

and ϕ+(ϕ) are slave boson operators, which correspond

to the states without any electrons, with two electrons or

four electrons. Operators ψ+
m−σ describe system config-

uration with two spin up electrons σ and one spin down

electron −σ in the symmetric and asymmetric states.

Matrix elements Xσl
i , Y σ−σlji , Y σσlji , Zσσ−σlmj ,

Zσ−σ−σlmj , and W σ−σ−σl
m can be evaluated as:

Xσl
i = 〈ψσi |c

+
σl|0〉,

Y σ−σlji = 〈ψσ−σj |c+σl|ψ
−σ
i 〉,

Y σσlji = 〈ψσσj |c+σl|ψ
σ
i 〉,

Zσσ−σlmj = 〈ψσσ−σm |c+σl|ψ
σ−σ
j 〉,

Zσ−σ−σlm = 〈ψσ−σ−σm |c+σl|ψ
−σ−σ〉,

W σ−σ−σl
m = 〈ψσσ−σ−σ |c+σl|ψ

σ−σ−σ
m 〉. (10)

Finally one can easily express matrix elements

through the matrixes (3), (5), (7) eigenvectors elements:

Xσ1
i = µi; Xσ2

i = νi,

Y σ−σ1ji = αjµi + βjνi,

Y σ−σ2ji = δjνi + γjµi,

Y σσ1ji = νi; Y σσ2ji = µi,

Zσσ−σ1mj = pmγj + qmδj ,

Zσσ−σ2mj = pmαj + qmβj ,

Zσ−σ−σ1mj = pm; Zσ−σ−σ1mj = qm,

W σ−σ−σ1
m = qm; W σ−σ−σ2

m = pm. (11)

The constraint on the space of the possible system

states have to be taken into account:

n̂b +
∑

iσ

n̂fiσ +
∑

jσσ
′

n̂σσ
′

dj +
∑

mσ

n̂ψmσ + n̂ϕ = 1. (12)

Condition (12) means that the states with only one

pseudo-particle are allowed.

Electron filling numbers in the coupled QDs can be

expressed in terms of the pseudo-particles filling num-

bers:

n̂elσ =
∑

l

c+σlcσl =
∑

i,l

|Xσl
i |2n̂fiσ +

∑

i,j,l

|Y σ−σlji |2n̂σ−σdj +

+
∑

i,l

|Y σσlji |2n̂σσdj +
∑

m,j,l

|Zσσ−σlmj |2n̂ψm−σ +

+
∑

m,l

|Z−σ−σσl
mj |2n̂ψmσ +

∑

m,l

|W σ−σ−σl
m |2n̂ϕ. (13)
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Consequently, the Hamiltonian of the system can be

written in terms of the pseudo-particle operators:

Ĥ = Ĥ0 + Ĥtun, (14)

Ĥ0 =
∑

iσ

εif
+
iσfiσ +

∑

jσσ
′

Eσσ
′

IIj d
+σσ

′

j dσσ
′

j +

+
∑

mσ

Emσ
III

ψ+
mσψmσ + EIVϕ

+
σ ϕσ +

+
∑

kσ

(εkσ − eV )c+kσckσ +
∑

pσ

εpσc
+
pσcpσ,

Ĥtun =
∑

kσ

Tk(c
+
kσcσ1 + c+σ1ckσ) + (k ↔ p; 1 ↔ 2),

where εi, E
σσ

′

IIj , Emσ
III

, and EIV are the energies of

the single-, double-, triple-, and quadri-electron states,

εk(p)σ is the energy of the conduction electrons in the

states k and p correspondingly, c+
k(p)σ/ck(p)σ are the cre-

ation (annihilation) operators in the leads of the tunnel-

ing contact, Tk(p) are the tunneling amplitudes, which

we assume to be independent on momentum and spin.

Indexes k(p) mean only that tunneling takes place from

the system of coupled QDs to the conduction electrons

in the states k and p correspondingly.

Bilinear combinations of pseudo-particle operators

are closely connected with the density matrix elements.

So, similar expressions can be obtained from equations

for the density matrix evolution but method based on

the pseudo particle operators is more compact and con-

venient. The tunneling current through the proposed

system written in terms of the pseudo-particle opera-

tors has the form:

Îkσ =
∑

k

∂n̂k
∂t

= i

[∑

ik

Xσ1
i Tkckσf

+
iσb+

+
∑

ijk

Y σ−σ1ji Tkckσd
+σ−σ
j fi−σ +

+
∑

ijk

Y σσ1ji Tkckσd
+σσ
j fiσ +

+
∑

mjk

Zσσ−σ1mj Tkckσψ
+
m−σd

σ−σ
j +

+
∑

mjk

Z−σ−σσ1
mj Tkckσψ

+
mσd

−σ−σ
j +

+
∑

mk

W σ−σ−σ1
m Tkckσϕ

+ψmσ − h.c.

]
. (15)

We set ~ = 1 and neglect changes in the electron

spectrum and local density of states in the tunneling

contact leads, caused by the tunneling current. There-

fore equations of motion together with the constraint on

the space of the possible system states (pseudo-particles

number) (12) give the following equations:

Im
∑

ik

TkX
σ1
i · 〈ckσf

+
iσb〉 =

= Γk
∑

i

{[1− nkσ(εi)] · nfiσ − nkσ(εi) · nb}(X
σ1
i )2,

Im
∑

ijk

Y σ−σ1ji Tk · 〈ckσd
+σ−σ
j fi−σ〉 =

= Γk
∑

ij

{[1− nkσ(E
σ−σ
IIj − εi−σ)] · n

σ−σ
dj −

− nkσ(E
σ−σ
IIj − εi−σ) · nfi−σ}(Y

σ−σ1
ji )2,

Im
∑

ijk

Y σσ1ji Tk · 〈ckσd
+σσ
j fiσ〉 =

= Γk
∑

ij

{[1− nkσ(E
σσ
IIj − εiσ)] · n

σσ
dj −

− nkσ(E
σσ
IIj − εiσ) · nfiσ}(Y

σσ1
ji )2,

Im
∑

mjk

Zσσ−σ1mj Tk · 〈ckσψ
+
m−σd

σ−σ
j 〉 =

= Γk
∑

mj

{[1− nkσ(E
m−σ
III

− Eσ−σIIj )) · nψm−σ −

− nkσ(E
m−σ
III

− Eσ−σ
IIj ) · nσ−σdj }(Zσσ−σ1mj )2,

Im
∑

mjk

Z−σ−σσ1
mj Tk · 〈ckσψ

+
mσd

−σ−σ
j 〉 =

= Γk
∑

mj

{[1− nkσ(E
mσ
III

− E−σ−σ
IIj )] · nψmσ −

− nkσ(E
mσ
III

− E−σ−σ
IIj ) · n−σ−σ

dj }(Z−σ−σσ1
mj )2,

Im
∑

mk

W σ−σ−σ1
m Tk · 〈ckσϕ

+
l ψmσ〉 =

= Γk
∑

m

{[1− nkσ(EIV − Emσ
III

)] · nϕ −

− nkσ(EIV − Emσ
III

) · nψmσ}(W
σ−σ−σ1
m )2. (16)

Tunneling current Ikσ is determined by the sum of

the right hand parts of the Eqs. (16). Pseudo particle fill-

ing numbers nfi, n
σ−σ
dj , nσσd , nψm, and nϕ can be easily

obtained from the stationary linear system of equations

[12].

3. Main results and discussion. The behavior of

tunneling current with the Rabi frequency tuning for the

different values of Coulomb interaction obtained from

Eqs. (16) is depicted in Figs. 1–2. The general features

of obtained results is tunneling current switching due

to the Rabi frequency tuning and formation of negative

tunneling conductivity.

We considered different experimental realizations:

both single-electron energy levels are situated between

the sample Fermi level (EF = 0) and the value of ap-

plied bias voltage (eV = 1 for all the figures) (Figs. 1b
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Fig. 1. (Color online) Tunneling current as a functions of Rabi frequency in the case of symmetrical tunneling contact in the

presence (black line) and in the absence (red line) of Coulomb interaction: ε1 = 1.20, ε2 = 0.50, eV = 1.00, U1 = U2 = 1.00,

Γk = Γp = 0.01 (a), ε1 = 0.25, ε2 = 0.20, eV = 1.00, U1 = U2 = 2.00, Γk = Γp = 0.01 (b), ε1 = 1.50, ε2 = 1.10, eV = 1.00,

U1 = U2 = 2.00, Γk = Γp = 0.01(c)

and 2); both levels exceed the sample Fermi level and

the value of applied bias voltage (Fig. 1c); one of the

energy levels is located between the Fermi level and the

value of applied bias voltage and another one exceeds

both of them (Fig. 1a).

Rabi frequency tuning results in the single-electron

energy levels spacing. When only one of the single-

electron energy levels is located between the Fermi level

and the value of applied bias voltage in the absence of

Coulomb correlations (see red line in Fig. 1a), tunneling

current amplitude increases with the increasing of Rabi

frequency Ω until the lowest energy level ε2 continue be-

ing localized in the [EF; eV ] energy gap. Further Rabi

frequency growth leads to the situation when both en-

ergy levels are localized out of the [EF; eV ] energy inter-

val and, consequently, sudden switching “off” of the tun-

neling current occurs. More complicated system behav-

ior corresponds to the case when Coulomb correlations

are considered (see black line in Fig. 1a). The decreas-

ing of tunneling current amplitude with the Rabi fre-

quency increasing is through one more stable state when

the tunneling current value continues to differ from zero

even when both single electron energy levels are local-

ized out of the [EF; eV ] energy gap. This is the direct

manifestation of Coulomb correlations, because due to

the presence of Coulomb correlations the multi-electron

energy states are located in the [EF; eV ] energy inter-

val. Consequently, tunneling current decreasing reveals

more complicated behavior. Moreover, obtained results

demonstrate the negative tunneling conductivity, when

tunneling current decreases with increasing of the Rabi

frequency.

Tunneling current evolution as a function of the Rabi

frequency in the case when both single-electron energy

levels are initially localized in the [EF; eV ] energy gap is

presented in the Fig. 1b. In the absence of Coulomb in-

teraction one can see the growth of the tunneling current

amplitude with the increasing of external field frequency

Ω until both single-electron energy levels are localized

in the [EF; eV ] energy interval (see red line in Fig. 1b).

Rabi frequency increasing leads to the situation when

only one energy level is located in the [EF; eV ] energy

interval and it corresponds to the sudden decreasing of

the tunneling current, which results in the formation of

“step-down” in the I−Ω characteristic. Further increas-

ing of the Rabi frequency leads to the situation when

both single electron energy levels are localized out of

the [EF; eV ] energy gap, and, consequently, one more

“step-down” appears. When Coulomb correlations are

taken into account (see black line in Fig. 1b), decreas-

ing of the tunneling current amplitude with the Rabi

frequency growth takes place through one more stable

state when the tunneling current value continues to dif-

fer from zero even when both single electron energy lev-

els are localized out of the [EF; eV ] energy gap due to the

multi-electron energy states contribution. Consequently,

three “steps-down” are visible in the I−Ω characteristic.

Tunneling current evolution in the case when both

single-electron energy levels are initially localized above

the [EF; eV ] energy gap is shown in the Fig. 1c. The

lowest energy level ε2 is very close to eV . In this case

tunneling current value is equal to zero until both single-

electron energy levels are located above eV . In the ab-

sence of Coulomb interaction one can clearly see one

“step-up” and one “step-down” in the I−Ω characteristic

(see red line in Fig. 1c). Switching “on” of the tunneling

current (“step-up”) takes place when the Rabi frequency

has the value, which is enough for the lower energy level

to be localized in the [EF; eV ] energy interval. Switch-

ing “off” (“step-down”) takes place when Rabi frequency
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growth leads to the situation when both energy levels

are localized out of the [EF; eV ] energy interval. ε1 is

higher than eV and ε2 is lower than EF. If one consider

Coulomb correlations (see black line in Fig. 1c), two

“steps-up” and two “steps-down” are present in the I−Ω

characteristic. This multiple tunneling current switch-

ing “on” and “off” is the result of multi-electron energy

states contribution caused by the presence of Coulomb

correlations.

The other interesting effect associated with Coulomb

correlations is the presence of multi-stability in the cou-

pled QDs for the particular value of system param-

eters (see black line in Fig. 2b). Fig. 2b demonstrates

Fig. 2. (Color online) Tunneling current as a functions

of Rabi frequency in the case of symmetrical tunneling

contact in the presence (black line) and in the absence

(red line) of Coulomb interaction: ε1 = 0.90, ε2 = 0.70,

eV = 1.00, U1 = U2 = 2.00, Γk = Γp = 0.01 (a), ε1 = 0.90,

ε2 = 0.85, eV = 1.00, U1 = U2 = 2.00, Γk = Γp = 0.01 (b)

that when both single-electron energy levels are located

slightly above eV and are close to each other, single

value of the tunneling current amplitude corresponds to

the two values of Rabi frequency Ω (see black line in

Fig. 2b). This effect disappears when the single-electron

energy levels spacing increases (Fig. 2a).

4. Conclusion. Tunneling through the system of

two QDs with strong coupling between localized elec-

tron states was analyzed by means of Heisenberg equa-

tions for pseudo operators with constraint on possible

system states. Various single-electron levels location rel-

ative to the sample Fermi level and to the applied bias

value in symmetric tunneling contact were investigated.

We revealed the appearance of negative tunneling

conductivity and demonstrated multiple switching “on”

and “off” of the tunneling current depending on the

Coulomb correlations value, external field amplitude

and energy levels spacing. We proved that Coulomb cor-

relations strongly influence the system behavior.

We found distable regime in the coupled QDs with

Coulomb correlations when single value of the tunneling

current amplitude corresponds to the two values of Rabi

frequency.
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