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Resonance fluorescence of localized multiatomic ensembles
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The issue of fluorescing multiatomic ensembles is addressed in a somewhat unconventional fashion. We are

concerned with the case of an ensemble being localized within a volume small compared to the wavelength.

Collective phenomena in resonance fluorescence make its analytical description problematic. We employ the

representation due to Holstein and Primakoff of atomic pseudo-spin operators. When the dispersion of the

number of excited atoms is small, the kinetic equation turns into that for an effective quantum photonic mode.

The new equation is nonlinear. Its stationary solution can easily be found nevertheless. The motion of two

fluorescing ensembles is considered as well. Their interaction appears to have geometric nature.
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Introduction. Novel techniques of laser ultracool-

ing enable one to assemble and manipulate quantum

multiatomic systems [1]. The variety of physical pro-

cesses these systems are involved at, challenges seri-

ously our ability to provide their relevant theoretical

description. Interatomic forces pose indisputably the

main problem. The adequate approach to cooperative

phenomena in emitting atomic ensembles is hardly less

problematic. When such an ensemble is localized so that

the distance between any pair of atoms is less than

the wavelength λ, no information is available about the

atom responsible for any given act of spontaneous emis-

sion. Various possible emission scenarios interfere there-

fore, which results in a highly entangled state in the

process of spontaneous emission. In the seminal work

[2] Dicke studied peculiarities of collective spontaneous

emission. It is worth to stress that no direct interac-

tion between atoms is needed to create the entangle-

ment. The last is generated by the irreversible process

of spontaneous emission of all atoms into common en-

vironment.

Let us take a localized ensemble ofN two-level atoms

with excited state |e〉 and ground state |g〉. The collec-

tive spontaneous decay of initially prepared state |e〉⊗N

terminates naturally in |g〉⊗N . If the spontaneous decay

is accompanied by excitation due to interaction of atoms

with an external monochromatic field, one may expect

to observe some non-trivial stationary kinetic state of
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the ensemble. There will be a fraction of excited atoms.

This is the regime of resonance fluorescence.

The (pseudo)spin model of atomic ensemble is useful

when treating the resonance fluorescence. In the case of

one atom the operators Ŝ0 = (|e〉〈e| − |g〉〈g|)/2, Ŝ+ =

= |e〉〈g| and Ŝ− = |g〉〈e| have the following commuta-

tion relations:

[Ŝ0, Ŝ±] = ±Ŝ±, [Ŝ+, Ŝ−] = 2Ŝ0. (1)

The operators Ŝ0 and Ŝ± appear to be the generator

of SU(2) group, so revealing the equivalence of two-

level atom and spin-half system. In terms of angular

momentum notations |1/2, 1/2〉 = |e〉 and |1/2,−1/2〉 =
= |g〉. The kinetic equation of resonantly fluorescing

atom reads

∂t ˆ̺t = −i∆[Ŝ0, ˆ̺t]− iΩ[Ŝ+ + Ŝ−, ˆ̺t] + (2)

+ 2ΓŜ− ˆ̺tŜ+ − Γ{Ŝ+Ŝ−, ˆ̺t},

where ∆ = ω0 − ω is the frequency detuning (ω0 is the

frequency of atomic transition and ω is that of classical

monochromatic field), Ω is the Rabi frequency, and Γ

is the rate of spontaneous decay, {. . .} stands for anti-

commutator. This equation as well as the (pseudo)spin

model is equally applicable to N -atomic localized sys-

tem. Really, due to system’s localization neither inter-

action with external light, nor spontaneous decay can

change the symmetry of N -atomic state with respect to

permutation of particles. In particular, the state being

initially invariant under any permutation (e.g. |e〉⊗N )

possesses this property at all times. In this case the
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ensemble of atoms is equivalent to N/2-spin system:

|N/2, N/2〉 = |e〉⊗N , ..., |N/2,−N/2〉 = |g〉⊗N . Here

the second quantity in the kets is the projection of the

“spin” onto the fixed energy-like direction in the effec-

tive 3D space. We must point that no dipole-dipole in-

teraction is present in (2). One may formally justify this

option taking the limit d → 0, Ω = Ed = const (d is

the atomic dipole moment, E is the amplitude of light

field). We also neglect the motion of atoms. These sim-

plifying assumptions are similar to those made in Tavis–

Cummings model [3, 4].

The expression for the stationary kinetic state of one

fluorescing atom can easily be established. Not so for

multiatomic ensemble. The stationary solution ˆ̺(st) to

(2) is an element of the universal enveloping algebra [5]

generated by Ŝ0 and Ŝ±. In the case of N = 1 this al-

gebra is merely span{1̂, Ŝ0, Ŝ±}. The case N = 2 (unit

(pseudo)spin) is more cumbersome but still tractable in

contrast to the situation N ≫ 1. In the last case the

problem of ˆ̺(st) evaluation seems to lie beyond a hand-

made analytical treatment. An alternative approach is

needed. It must naturally be approximate.

Model. It would be instructive to make some as-

sertions about the nature of stationary solution to (2).

Note that the loss ∼ ΓŜ− ˆ̺Ŝ+ of atomic system’s energy

competes against the income ∼ Ω(Ŝ+ ˆ̺− ˆ̺Ŝ−). Let us es-

timate the competing magnitudes for ˆ̺ = |S,M〉〈S,M |.
For M = ±(S− 1) and S ≫ 1 we get respectively ∼ ΓS

and ∼ Ω
√
S whereas for M ∼ 0 these magnitudes are

∼ ΓS2 and ∼ ΩS. Because of rapid collective decay in

the last case, steady kinetic states are more likely to

survive near the poles of Bloch sphere (for |M | ∼ S)

rather than near its equator. This conclusion will be

useful later on.

The so-called Holstein–Primakoff representation [6]

is known for the operators (1) which act in the space

of states with definite spin value span{|S,M〉 : M =

= −S,−S + 1, . . . , S}:

Ŝ0 = â†â− S,

Ŝ+ = â†
√

2S − â†â, Ŝ− =
√

2S − â†â â, (3)

where â and â† obey the commutation relation [â, â†] =

= 1 of Bose-type. Let us assume that under some condi-

tions the dispersion of n̂ ≡ â†â in the state ˆ̺t is small,

so that one may approximate Ŝ±:

Ŝ+ ≃
√

2S − 〈n〉tâ†, Ŝ− ≃
√

2S − 〈n〉t â. (4)

Here 〈n〉t = Tr n̂ ˆ̺t. The kinetic equation (2) takes the

form (with 2S = N)

∂t ˆ̺t = −i∆[â†â, ˆ̺t]− iΩ
√

N − 〈n〉t[â+ â†, ˆ̺t] + (5)

+ 2Γ(N − 〈n〉t)â ˆ̺tâ† − Γ(N − 〈n〉t){â†â, ˆ̺t}.
This is the equation for an imaginary photonic mode

interacting with a classical (quasi)harmonic dipole

∝ Ω
√

N − 〈n〉t and subjected to loss of quanta with the

rate Γ(N − 〈n〉t).
Eq. (5) is non-linear. Nevertheless, its steady-state

solution is straightforward. This is the Glauber coher-

ent state

ˆ̺(st) = |α〉〈α|, (6)

where

α = − iΩ
√

N − 〈n〉(st)
Γ(N − 〈n〉(st)) + i∆

. (7)

The equation 〈n〉(st) = Tr n̂ ˆ̺(st) = 〈α|â†â|α〉 = |α|2
delivers the following condition for 〈n〉(st):

〈n〉(st) = Ω2(N − 〈n〉(st))
Γ2(N − 〈n〉(st))2 +∆2

. (8)

This is a cubic equation in 〈n〉(st) (it turns into quadratic

equation for ∆ = 0). Possible values of 〈n〉(st) are given

by the intersections of LHS of (8), the line function of

〈n〉(st), and its RHS, the dispersion-like function. De-

pending on the values Ω/Γ, ∆/Γ, and N , there may

be three, two, one or no one intersection points. Let us

consider the case of three intersections (Figure). Two

Parameters: N = 25, ∆2
= 0.2Γ

2, Ω2
= 25Γ

2. The straight

line 1 is the left-hand side of (8). The curve 2 is its right-

hand side. The curve 3 is the distribution of excited atoms

for the left, physically meaningful, intersection of 1 and 2.

The curve 4 is the same distribution for the right intersec-

tion

solutions of (8) (closest to 0 and to N) can be re-

lated to aforementioned expected steady-state solutions
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of the kinetic equation. The first of these two points

is evidently stable, for any shift towards greater values

of 〈n〉 makes the collective decay stronger, which re-

turns the point back. The same reasoning prompts us

to conclude the unstable nature of the third interme-

diate point. Hence the greatest solution of (8) must be

stable. The fact is yet insufficient for this solution being

legitimate. The point is that the Poisson distribution

of n in the state (6) for the greatest value of 〈n〉(st) is

rather wide (see Figure). The unstable solution appears

to be within the width. Hence the stable character of

the greatest intersection point is in fact spurious. In

addition the great width in n is inconsistent with the

relevance of the assumption (4). A different situation

obtains with the least solution to (8). The width of the

Poisson distribution is much less in this case (the curve

3 at Figure). This particular value of 〈n〉(st) along with

the corresponding ˆ̺(st) = |α〉〈α| have real chances to be

close to their exact counterparts delivered by (2).

Discussion. There is an important case in which the

solution for 〈n〉(st) is quite simple and straightforward.

Really, if one may expect 〈n〉(st) ≪ N , (8) yields

〈n〉(st) ≃ NΩ2

∆2 +Ω2 + Γ2N2
. (9)

If RHS of this expression is great (this may be in the

case N ≫ 1), the dispersion of n in the correspond-

ing coherent state is of the order of
√

〈n〉(st) [4]. This

quantity is by all means negligible when compared with

N − 〈n〉t in (5) for 〈n〉t closed to 〈n〉(st).
The proposed approach can shed some light on the

peculiarities of relative motion of two localized coher-

ent fluorescing ensembles of atoms, 1 and 2. In what

follows we will address them as “drops”. Assume the

translational motion of the drops to be much slower

then their internal radiation-induced evolution. Hence

for this evolution the positions r1 and r2 of the drops

may be treated as parameters. We consider the plain

pumping wave which inserts the proper r-dependence

to the Rabi frequencies. The master equation for the

state operator of the drops reads:

∂t ˆ̺t = −i∆
∑

i=1,2

[â†i âi, ˆ̺t]−

− iΩ
∑

i=1,2

√

Ni − 〈ni〉t[â†ie−ikri + âie
ikri , ˆ̺t] +

+ Γ
∑

i=1,2

(Ni − 〈ni〉t)
(

2âi ˆ̺t â
†
i − {â†i âi, ˆ̺t}

)

+ (10)

+ γ(r)
∑

i6=j

√

(Ni − 〈ni〉t)(Nj − 〈nj〉t)×

×
(

2âi ˆ̺t â
†
j − {â†jâi, ˆ̺t}

)

.

The third line stands for spontaneous emissions with un-

ambiguous identification of the drop responsible for the

emitted photon. On the contrary, the last line takes ac-

count of the interference of the both scenarios; the factor

γ(r) = Γ sin(kr)/kr appears due to integration over all

possible directions of spontaneous emissions; this rate

depends on the length of r = r1 − r2. We introduce also

the center of mass of the two drops, so that

r1 = R+
m2

M
r, r2 = R− m1

M
r.

Here M = m1 +m2. The steady-state solution to (10)

is the product of coherent states:

|e−ikRα1(r)〉1〈e−ikRα1(r)|⊗|e−ikRα2(r)〉2〈e−ikRα2(r)|,
(11)

where

α1(r) = (12)

= −iΩ
√

N1 − 〈n1〉
{

[Γ(N2 − 〈n2〉) + i∆]e−ikrm2/M −

− γ(r)(N2 − 〈n2〉)eıkrm1/M

}{

[Γ(N1 − 〈n1〉) + i∆]×

× [Γ(N2−〈n2〉)+i∆]−γ(r)2(N1−〈n1〉)(N2−〈n2〉)
}−1

.

The expression for α2(r) is similar and can be get from

(12) by interchange of 1 and 2 indices. The mean steady-

state values of excited atoms in the drops appear as the

solutions to 〈n1〉 = |α1(r)|2 and 〈n2〉 = |α2(r)|2. The

important point for what follows is that the internal

state of the drops (11) is pure. In the case of pure total

state it may hence be written as

|Ψ〉 =
∫

ψ(r1, r2)|r1, r2〉 ⊗

⊗ |e−ikRα1(r)〉1 ⊗ |e−ikRα2(r)〉2d3r1d3r2. (13)

It is worth to note that both the external and internal

states of the pair of drops are generally mixed due to

entanglement between the translational and internal de-

grees of freedom, and the function ψ(r1, r2) should not

be confused with a wave function. Rapid radiational pro-

cesses have already been taken into account in the state

(13). Its slow evolution is governed by kinetic Hamilto-

nians of the drops2):

i∂t|Ψ〉 =
(

p̂21
2m1

+
p̂22
2m2

)

|Ψ〉. (14)

2)For the sake of simplicity we take into account no external

potentials. In real situation these appear as an optical lattice, for

example, created by some non-resonant field.
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The resulting equation for ψ(r1, r2) written as a func-

tion of R and r reads

i∂tψ(R, r) = − 1

2M

[

(∂R − ik)2 − 2k2
]

ψ(R, r)−

− 1

2m

{

[∂r − iA(r)]2 + V (r)

}

ψ(R, r). (15)

Here the vector and scalar potentials in drops’ relative

motion appear:

A(r) = Im
∑

i=1,2

α∗
i (r)∂rαi(r), (16)

V (r) = −
∑

i=1,2

|∂rαi(r)|2 −A
2(r). (17)

The potentials have pure geometric origin. There is a

resemblance with geometric potentials in the motion of

atoms as individual objects under coherent population

trapping in optical fields with non-trivial configurations

[7]. In our case the geometric potentials govern the rel-

ative motion of the drops in the plain wave.

Resuming, there proposed the approximate ap-

proach to the description of resonance fluorescence of

localized multiatomic ensembles. Steady-state of the flu-

orescing ensemble, Glauber coherent state, is quite sim-

ple in this approach. In a sense the greater number of

atoms constitutes the ensemble, the more relevant the

approach is. It may find applications in many fields. In

particular, the approach makes it possible to extend the

description of feedback phase-switching from the case of

one and two fluorescing atoms [8] to multiatomic case.
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