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Optical Tamm states in arrays of all-dielectric nanoparticles
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We predict that edges of a finite one-dimensional array of high-index dielectric nanoparticles can support

evanescent optical modes localized near the edge, which represent an optical analogue of the well-known elec-

tronic Tamm states in solids. We describe the properties of such modes for different types of the edge defect

by employing dipole-dipole approximation.
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Interfaces separating different physical media can

support a special class of transversally localized modes

known as surface waves. Linear surface waves have been

studied extensively in many branches of physics [1]. As

was first predicted by I.E. Tamm [2], a special type

of localized electronic states can exist at the edge of

a truncated periodic potential, and this study opened

the field of surface physics of solids in the 1930s. Such

Tamm states are associated with the presence of a cer-

tain type of surface defect, and they were found in other

systems, e.g., at an interface separating periodic and

homogeneous dielectric optical media including surface

phonons [3] and surface polaritons [4].

Electromagnetic surface waves are known to exist

as the waves localized at the interface separating either

two homogeneous or homogeneous and periodic dielec-

tric media [5]. It was also shown that arrays of weakly

coupled optical waveguides can support different types

of linear and nonlinear states localized at and near the

waveguide edge (see, e.g. [6] and references therein). It

was found that Tamm surface waves can exists at the

edge of an array of optical waveguides when the value of

the effective refractive index of the boundary waveguide

is above a certain threshold [7].

Recently, a novel type of subwavelength guiding of

light has been demonstrated with arrays of spherical

dielectric nanoparticles with high values of the optical

refractive index [8, 9]. Dielectric nanoparticles support

both magnetic dipole (MD) and electric dipole (ED) res-

onances simultaneously [10, 11]. This gives an additional

control parameter over the light scattering [12], and the

waveguides composed of such nanoparticles were shown

to support several modes of different types [9]. Defects
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in such structures can easily appear during the fabrica-

tion process, or otherwise implemented artificially. This

could lead to the presence of modes localized near the

defects.

In this Letter we study localized edge states in a

chain of spherical dielectric particles, which are formed

by introducing a defect at the edge of the chain. We

consider a chain of N = 20 particles with the period of

the chain a = 200 nm, radius of the spheres r = 70 nm

and permittivity εp = 16, which corresponds to silicon

in optical frequency range. Two types of defects are con-

sidered: different radius R of the leftmost particle, and

different separation distance adef = a − L between the

two leftmost particles (see Fig. 1). In our calculations,

Fig. 1. Schematic of chains of dielectric spheres of radius r

and period a with two types of defect: different radius of

the leftmost sphere R (a), different distance between two

leftmost spheres adef = a− L (b)

we do not take into account the material dispersion of

silicon because the real part of the permittivity does not

change significantly in the required spectral range, and

the imaginary part can be ignored for dielectric materi-

als [13].

484 Письма в ЖЭТФ том 100 вып. 7 – 8 2014



Optical Tamm states arrays of all-dielectric nanoparticles 485

It was shown that modes of an infinite chain of high-

refractive index dielectric particles can be described

with a good accuracy by the coupled-dipole approxi-

mation [9], i.e. when particles are treated as hybrid MD

and ED with magnetic and electric momenta, oscillat-

ing with frequency ω [∝ exp(−iωt)] [14, 15]. Due to the

fact that a magnetic dipole mode describes the funda-

mental response of a high-dielectric spherical particle

and all other multipoles are suppressed (see, for exam-

ple Supplementary Information in Ref. [10]), this model

gives very accurate results in the vicinity of the mag-

netic dipole resonance, especially in the case of longitu-

dinal polarization, i.e. when MDs are oriented along the

chain, and EDs are not excited. Therefore we simplify

our analysis by considering the case of longitudinally

polarized magnetic modes. Then a finite chain without

defects can be described by a set of coupled equations

for N magnetic moments in the following form [16]:

Cm = 0,

where m is the column-vector of magnetic moments ori-

ented along the chain axis of the length N , and C is the

N ×N matrix of interaction coefficients:

Cij =
1

αm(ω)
, i = j,

Cij = −2 exp(ikhdij)

d2ij

(

1

dij
− ikh

)

, i 6= j,

where αm = 3ibsc1 /2k3h is the magnetic polarizability of

the sphere with bsc1 being the scattering coefficient that

depends on permittivity and radius of the sphere [17],

dij = a|i − j| is the distance between the centers of

i-th and j-th spheres, εh is the permittivity of the

host medium, and kh =
√
εhω/c is the host medium

wavenumber. When we introduce a size defect to the

leftmost particle, we assign C11 = 1/αdef
m , where αdef

m is

the magnetic polarizability of the defect sphere. And for

the interparticle distance defect: dkl = a|k− l|+L when

k = 1 or l = 1.

Eigenfrequencies of the considered system are de-

fined as zeros of the function:

F (ω) = det[C]. (1)

In Fig. 2a we show a complex plane [Re(ω), Im(ω)] with

thick black curves corresponding to the solutions of the

equation Re[F (ω)] = 0 and blue thick curves corre-

sponding to the solutions of the equation Im[F (ω)] = 0,

for a chain with a size defect sphere of radius R = 75 nm.

Twenty solid red circles show the eigenfrequencies corre-

sponding to Fabry-Pérot resonances in a chain without

Fig. 2. (Color online) (a) – Complex plane [Re(ω), Im(ω)]

with thick black curves corresponding to the solutions of

the equation Re[F (ω)] = 0 and blue thick curves corre-

sponding to the solutions of the equation Im[F (ω)] = 0,

for a chain with a defect sphere of radius R = 75nm; solid

red circles show the eigenfrequencies of a chain without de-

fect. (b, c) – Dispersion diagram of a chain without defect;

βa/π is a normalized Bloch wavenumber

defect, which form a passband of considered periodic

structure. Corresponding eigenmodes can be interpreted

as Bloch waves with wavenumbers being defined from

the mode profiles [16]. Dispersion diagram for this struc-

ture is shown in Figs. 2b and c. Due to radiative losses all

eigenfrequencies are complex. Passband is observed in

the spectral region 0.667 . Re(ω)a/πc . 0.712. Modes

that lie below the light line (i.e. with β > Re(ω)/c) are

characterized by low radiative losses with small imag-

inary parts of ω, and can be considered as subradiant

modes. Other modes lie above the light line and thus

are characterized by fast radiative damping with large

values of Im(ω), and can be considered as superradiant

modes.

When we introduce a defect in the finite chain,

N − 1 eigenmodes stay in the passband with both real
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and imaginary parts of eigenfrequencies approximately

the same as in ideal periodic structure; which means

that the guiding properties of this chain are not signifi-

cantly affected by the presence of a defect in the struc-

ture. At the same time, one eigenfrequency that cor-

responds to the defect mode lies outside the passband

(see Fig. 2a). Thus, the defect mode corresponds to an

evanescent wave and becomes localized near the edge

of the truncated chain. Eigenfrequency of this localized

defect mode as a function of the difference between the

radius of the defect and other spheres R − r is plotted

in Fig. 3. For R > r, i.e. when MD resonance frequency

Fig. 3. (Color online) Black and blue lines show real (a)

and imaginary (b) parts of the normalized eigenfrequency

of the defect mode as a function of the difference between

the radii of defect sphere R and other spheres r. Red solid

line corresponds to the complex resonance frequency of a

single sphere of radius R. Dark grey area in Fig. a shows

the passband of the structure without defect. Vertical light

grey areas in Figs. a and b indicate the values of R− r at

which the defect mode does not exist

of the defect sphere is lower than that of other spheres,

defect eigenmode becomes superradiant defect mode. In

the opposite case for R < r, when the eigenfrequency of

the defect mode lies above the passband, we observe the

formation of subradiant defect mode. Such description

can also be justified by their corresponding imaginary

parts (see Fig. 3b).

Defect modes profiles for R = 80 and R = 60 nm

are shown in Figs. 4a and b, respectively. Mode with

lower frequency emerges from the lower edge of the

Brillouin zone when R is about 72 nm. At this point

all dipoles oscillate in phase, and this mode is strongly

radiative (imaginary part of eigenfrequency is large).

When the radius of the defect sphere increases, dipoles

tend to dephase and radiative damping rate of this

mode decreases (see Fig. 3b). A mode with higher fre-

quency emerges from the upper edge of the Brillouin

zone (with β = π/a) when R is about 68 nm. At this

point the neighbouring dipoles oscillate out-of-phase,

i.e. this mode is staggered, and it has low radiative

damping rate due to interference of the dipoles radi-

ation. Similarly, when R becomes smaller, out-of-phase

configuration starts to break, and an imaginary part of

eigenfrequency grows (see Fig. 3b) – this mode radiates

faster.

In Fig. 3 we also show the complex eigenfrequency

of a single sphere with radius R by thin red line. We

observe that the real part of the defect mode eigenfre-

quency is practically the same as that of a single sphere

with radius R. However imaginary part is quite different

for small values of |R − r|, when there remains rather

strong interaction between the defect sphere and other

spheres. Ultimately, for large values of |R−r| when MD

resonance frequencies of the spheres with radii R and

r substantially differ, interaction becomes very weak.

Consequently, there exist N − 1 modes of a chain of

N − 1 spheres of radius r, and one mode which is a MD

resonance of a single sphere with radius R.

For spacing type of defect, the eigenfrequencies of de-

fect modes as a function of defect parameter L = a−adef

are shown in Fig. 5. In this case, when we reduce the dis-

tance between the two leftmost spheres by ≈ 30 nm, two

defect modes emerge above and below the passband as

indicated by black and blue curves in Fig. 5. Since in

this case all spheres are of the same radius, both real

and imaginary parts of the defect modes weakly depend

on the value of L, still maintaining their super- and sub-

radiant character (see Fig. 5b).

In conclusion, we have studied a novel type of op-

tical states localized at the edge of a truncated array

of high-index dielectric nanoparticles, which represents

an optical analogue of the well-known electronic Tamm

states in solids. We have employed the dipole approxi-

mation, which is known to be well suited for theoretical

study of electromagnetic properties of such structures.

We have analyzed the properties of the optical localized

modes for different types of the edge defects. We have

shown that when the edge sphere has a different radius

R, localized mode is observed at the frequency that cor-

responds to the resonance of a single sphere with radius

R, when |R − r| is larger than a certain critical value

of about 2 nm. Furthermore, for small values of |R − r|
(. 10 nm), localized modes exhibit super- or sub-radiant

properties compared to those of a single dipole. This
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Fig. 4. Amplitude (a, c) and phase (b, d) of magnetic moments distribution in the defect modes of a chain with defect sphere

of radius R = 75 nm (a, b) and 65 nm (c, d), indicated by black circle and square in Fig. 3, respectively

Fig. 5. (Color online) Real (a) and imaginary (b) parts

of the normalized eigenfrequency of the defect mode as a

function of the spacing defect parameter L. Grey area in

Fig. a shows the pass band of the structure without defect

can be explained by the interaction between the defect

and rest of the chain. When a defect is introduced by

varying the distance between the two edge particles, we

observe simultaneously both super- and sub-radiant lo-

calized modes emerging above and below the passband

at a certain value of the defect parameter L. An impor-

tant difference in this case is that the radiation damping

rate of these modes depends weakly on the separation

distance L.
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