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Feedback-enhanced self-organization of atoms in an optical cavity
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We considered an application of a feedback loop to enhance the self-organization of atoms in a cavity. Dif-

ferently to the original setup, we assumed the light leaking from the cavity was photo-detected and the signal

was used to appropriately adjust the atomic potential. It was shown that no additional feedback-induced quan-

tum noise was introduced into the system. Numerical simulations performed in classical approximation showed

that the application of feedback weakened the requirement for the atom-field coupling needed to observe the

self-organization.
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The search of novel cooling techniques applicable to

a wide range of microparticles is still an important prob-

lem (see, for example, [1]), as laser cooling is known

to be hardly used for complex particles without simple

cyclic transitions.

The promising approach is the cavity cooling based

on the coupled dynamics of the atoms and the cavity

field [2, 3]. It has been shown that in setups with the

pumping transverse to the cavity axis the cooling can

be accompanied with the formation of the self-organized

Bragg grating [4]. The reason of the self-organization is

the collective scattering of photons from the transverse

pump into the cavity field. The experimental evidence

of this effect has been reported [5–9].

The core ingredient of an original self-organization

setup is a high-finesse optical cavity capable to provide

strong atom-field coupling. Although modern technol-

ogy allows to build up such a setup, the observation of

the self-organization remains technically challenging. In

view of this, we propose to supply the original setup with

an additional positive feedback loop known to be a stan-

dard tool to improve sensitivity of classical electronic de-

vices [10]. We will show below that the feedback helps to

reduce the atom-field coupling required to observe the

self-organization. One can even think of an alternative

setup with no cavity at all, where the self-organization

is obtained with the electronic feedback alone.

The application of feedback to control the motion of

a single atom has been theoretically discussed [11, 12]

and experimentally demonstrated [13, 14]. There are

also proposals to control atomic ensembles [15–19]. In all

these schemes the feedback-induced back-action noise

possesses certain limits to the efficiency of the control
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[20, 21]. The destructive effect of this noise can be ex-

pected when the feedback is applied to an otherwise

closed system. The system we are dealing with is essen-

tially open system that includes the cavity field, which

is coupled to the vacuum modes of the electro-magnetic

field outside the cavity. Thus, the system we would like

to improve by the feedback loop is affected by the quan-

tum noise even without the application of the feedback.

The feedback is supposed to use the results of the mea-

surements of the field outside the cavity. This infor-

mation in the standard cavity-induced self-organization

setup is simply lost. Thus, the application of feedback

even in the quantum regime should not introduce a noise

source that would be otherwise absent. These arguments

additionally motivate the forthcoming analysis.

Apart from the newly suggested feedback loop the

model we are going to investigate is similar to that of the

Ref. [23]. An ensemble of cold degenerate bosonic atoms

(BEC) is trapped in a quasi-1D potential and placed in

an optical cavity, see Fig. 1. Transverse pumping field

Fig. 1. The conceptual scheme of the self-organization ex-

periment with Feedback

η is applied to the atoms in the cavity. The scattering

of the photons from the transverse pump to the cavity
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mode depends on the location of the atoms inside the

cavity [4]. On the other hand, the cavity field produces

a standing-wave potential for the atoms. Thus, there is

a cavity-mediated self-action of the atoms that at cer-

tain circumstances results in the self-organization. The

Hamiltonian that describes the system is given by

H0 = ~ω0a
†a+

∫

dxΨ†(x)
[

− ~
2

2m
∂2x +

~g20
∆
U2
0 (x)a

†a+

+
~g20
∆
U0(x)(η

∗a+ ηa†)
]

Ψ(x). (1)

Here, ω0 is the cavity mode frequency; a is the cavity

annihilation operator that obeys commutation relations
[

a, a†
]

= 1; Ψ(x) is the atomic field operator that for

bosons has the standard commutator
[

Ψ(x′),Ψ†(x)
]

=

= δ(x − x′); m is the atomic mass; g0 is the atom-field

interaction constant; ∆ is the atom-cavity detuning;

U0(x) = cos(ω0x/c) is the cavity mode function; η is the

classical amplitude of the transverse pump field. Apart

from the Hamiltonian evolution governed by Eq. (1) the

system demonstrates irreversible dynamics due to the

coupling of the cavity mode to the vacuum modes out-

side the cavity.

The atom-field coupling g0 is under normal condi-

tions small compared to other characteristic frequencies

of the system. Thus, an experimental observation of the

self-organization is non-trivial. To reduce the require-

ments for the strong atom-field coupling while keeping

the intensities of the used lasers within reasonable lim-

its we propose to supply the system with an additional

positive feedback loop. The simplest scheme of such a

loop would be to measure the cavity photon number and

apply to the atoms an additional potential proportional

to this result and having the same position dependence

U2
0 (x) as the original cavity potential. The example of

the setup is shown in Fig. 1. Here, the feedback laser

power is controlled by the measurement of the photons

inside the cavity. To simplify the treatment of the feed-

back loop we assume that the light scattered from the

transverse pump has slightly different frequency or po-

larization from the light that produces dipole potential

for the atoms. In addition, we assume some trapping

potential that ensures transverse confinement and quasi

1D motion.

The feedback is designed to increase the optical po-

tential for the atoms as they start to scatter more pump

photons into the cavity mode. This makes the atomic

distribution that fulfills the Bragg condition and corre-

sponds to efficient scattering more favorable compared

to, for example, uniform distribution. Thus the atoms

will gradually self-organize into the Bragg grating. In

this paper we consider only linear feedback which means

the potential for the atoms is proportional to the num-

ber of cavity photons. The dynamics in this case resem-

bles that of the original self-organization setup [4]. In

our scheme it is however possible to perform a more gen-

eral non-linear feedback that might be more efficient. A

detailed analysis of this general case we hope to present

elsewhere.

The described feedback loop is based on the de-

tection of photons leaking from the cavity. The quan-

tum description of this feedback scheme has been de-

veloped in Refs. [24, 25]. According to these references

the unconditioned evolution of the quantum state of the

atoms-cavity system is described by the following mas-

ter equation

˙̺ = − i

~
[H0, ̺]−

κ

2

(

a†a̺+ ̺a†a
)

+ κeLτa̺a†. (2)

This equation is written in the Markovian limit with

κ being the measurement strength, L being a feedback

super-operator acting on the system, and τ being the

feedback interaction time. To provide the feedback that

changes the atomic potential proportionally to the cav-

ity photon number we assume that the super-operator

L is implicitly given by

eLτ̺ = i
g20
∆κ

Γ [V, ̺]− ̺. (3)

The operator V in this equation is the additional

feedback-induced potential for the atoms. It is assumed

to be of the form of

V = ~

∫

dxΨ†(x)U2
0 (x)Ψ(x). (4)

The parameter Γ in (3) is the gain coefficient of the

feedback loop. It describes the depth of the feedback-

induced potential for the atoms. Experimentally the

feedback-induced potential is realized with an additional

laser field that cannot have arbitrary large intensity.

Due to this restriction the gain Γ cannot be made very

large at all stages of the system evolution. As the atoms

become self-organized the feedback signal, though lim-

ited by the transverse pump intensity, can become so

large that the required potential for the atoms exceeds

the capabilities of the available laser. Here we assume

that this regime is not reached and the feedback gain Γ

can be considered as a constant parameter.

Instead of dealing with the master equation (2) it is

reasonable to use the positive P -representation. This ap-

proach at least in principal allows for the reformulation

of a quantum problem in terms of classical stochastic

differential equations (SDE) [22, 26].
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For the sake of simplicity we perform a discrete mode

expansion of the atom-field operator Ψ(x) as

Ψ(x) =
∑

m

φmwm(x). (5)

The explicit form of the mode functions wm(x) will

be defined latter. Since the derivation is standard

we skip the details as well as omit writing down a

lengthy Fokker–Planck equation. Using Einstein sum-

mation convention the Ito-type SDE read as

dϕi =

[

− i

~
Kik −

i

~
Πik

]

ϕkdt−

− i

√

g20
∆

(

α[U2]ik + ηUik

)

ϕk(dW1 + idW2),

dψi =

[

i

~
Kik +

i

~
Πik

]

ψkdt+

+ i

√

g20
∆

(

β[U2]ik + η∗Uik

)

ψk(dW3 − idW4),

dα =

[

−iωα− κ

2
α− ig20

∆
ψi

(

α[U2]ik + ηUik

)

ϕk

]

dt+

+
1

2

√

g20
∆

(dW1 − idW2),

dβ =

[

iωβ − κ

2
β +

ig20
∆
ϕi

(

β[U2]ik + η∗Uik

)

ψk

]

dt+

+
1

2

√

g20
∆

(dW3 + idW4),

Πik =
~g20
∆

(η∗α+ ηβ)Uik +
~g20
∆

(1 + Γ)αβ[U2]ik. (6)

Here ϕi, ψi are the pair of phase-space variables corre-

sponding to ith mode of the atomic field, while α and

β are the phase-space variables of the cavity field. All

these quantities are complex numbers. The various real

Wiener increments dWi are assumed to be independent,

satisfying dWidWj =dtδi,j . The matrix elements of the

kinetic energy are given by

Kik =

∫

dxwi(x)

[

− ~
2

2m
∂2x

]

wk(x). (7)

Analogously one defines the matrix elements represent-

ing the cavity mode function Uik and the square of the

mode function [U2]ik, which determines the coordinate

dependence of the atomic potential. We assume that the

mode functions wi(x) are real and, as a consequence, the

matrices are symmetric.

As is seen from Eq. (6) the noise does not depend on

the feedback gain Γ so the feedback does not introduce

excess noise into the system. This is though expected

but non-trivial result of the paper. The collective na-

ture of the atom-field interaction is reflected by the fact

that the same noise drives all the atomic modes and the

cavity field.

Now we neglect the noise in Eq. (6) and study semi-

classical dynamics. In the absence of the noise that can

disrupt the complex conjugate of ϕi and ψi as well as α

and β we can consider only the equations for ϕi and α,

since ψi=ϕ
∗
i and β=α∗.

Since the aim of the paper is to demonstrate the

principal applicability of the feedback enhancement, we

consider below rather rough but simplest approxima-

tion. As the first step we specify the mode functions

wm(x) as step functions representing the atoms local-

ized in a spacial domain of a certain width ∆x

wi(x) = [Θ(x− xi)− Θ(x− xi −∆x)] /
√
∆x, (8)

where Θ(x) is the Heaviside step function. The matrix

elements of the potential corresponding to the maxi-

mum/minimum and ∆x = λ/4 will be approximated as

U2
max = 1 and U2

min = 0.

Furthermore, we restrict the number of the atomic

degrees of freedom to only three modes. In other words,

we consider three spacial domains: one corresponding

to all the odd sites of the cavity potential, another to

all the even sites, and the last to the space between

the cavity potential minima. The graphical representa-

tion of this approximation is shown in Fig. 2, where the

Fig. 2. Three-site approximation for the distribution of the

atoms. The approximate stepwise cavity mode function U0

and the cavity potential U2
0 (solid curves) are shown and

compared with original ones (dashed curves)

stepwise cavity mode function U0 and the cavity poten-

tial U2
0 corresponding to the made three-site approxi-
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mation are shown. This approximation greatly simpli-

fies SDE (6), but ignores long-wavelength excitations in

BEC. It, however, captures the spatial periodicity of the

forces acting on the atoms, thus it should correctly de-

scribe the essential features of the atomic motion. We

scale the time with the quantity τ that is the time in-

terval required to travel a wavelength with the recoil ve-

locity: τ = λ2m/2π~. Then the combination ε≡ g20τ/∆

represents the strength of the atom-field coupling with

respect to the atomic kinetic energy. The cavity decay

rate κ is also scaled as κ→ κ/τ . To ensure the uniform

distribution to be a valid solution we require zero-flux

boundary conditions on sites 1 and 3.

The set of evolution equations for the three-mode

approximation then reads

ϕ̇1 = i(ϕ2 − ϕ1)− iεη(α+ α∗)ϕ1,

ϕ̇2 = i(ϕ1 + ϕ3 − 2ϕ2)− iε(1 + Γ)|α|2ϕ2,

ϕ̇3 = i(ϕ2 − ϕ3) + iεη(α+ α∗)ϕ3,

α̇ = −κ
2α− iε|ϕ2|2α− iεη(|ϕ1|2 − |ϕ3|2). (9)

Let us look at the limit of small coupling ε → 0, as

the feedback is assumed to be useful in this regime. It

is seen from Eq. (9) that to have non-trivial dynamics

in this case one should compensate for small coupling

by increasing the feedback gain Γ so that the product

ε
√
Γ + 1 is kept constant. However, even then the last

terms in the first and the third equations of the sys-

tem (9) vanish. These terms represent the collective re-

coil of the atoms during the scattering of pump photons

into the cavity mode.

As the scattering depends on the position of the

atoms the collective recoil [27, 28] may be very im-

portant to initiate the self-organization. Another con-

stituent of the atomic dynamics is the motion in the

feedback-controlled potential, which is represented by

the term proportional to Γ. Below we analyze the role

of these effects in the formation of the self-organized

state.

Having the three-site model with only four bosonic

modes we can perform straightforward numerical anal-

ysis of the nonlinear problem. Since the number of de-

grees of freedom is small the simulations can be done

on a conventional workstation computer. In particular,

we numerically solve the system Eq. (9) with the help of

XMDS2 [29].

We ignore the fact that the intensity of the feedback

laser is technically limited and assume that the feed-

back laser has enough power to provide any required

potential amplitude.

We perform simulations for several values of the

transverse pump η. For each value of η a series of sim-

ulations with different gain Γ is made to approximately

determine the feedback gain that corresponds to the self-

organization threshold. The numerical results are ob-

tained for ε = 1.3 ·10−3, κ = 5 ·103, and N = 104, which

should be easily realized in an experiment as they corre-

spond to κ = 38 MHz, g0 = 32 kHz, and ∆ = 100MHz

(compare with g0 ≈ 68MHz in [30]). The example of

the simulation results is shown in Fig. 3. The transverse

Fig. 3. The atom number difference ∆N between the odd

and even sites of the potential for Γ = 5 · 105 and 6 · 105

pump is taken to be η=1000 as it is somewhat below the

self-organization threshold without feedback. The figure

shows the time dependence of the atom number differ-

ence between the odd and even sites ∆N . The upper

curve corresponds to the gain Γ=5 ·105 and shows com-

pletely oscillatory behavior with uniform (on average)

distribution. The lower plot corresponds to Γ= 6 · 105
and demonstrates the presence of the organized phase

since the field and the number difference approach the

steady-state values far from that in the uniform distri-

bution. The atoms start to collect themselves in odd or

even potential minima forming a sort of Bragg grating

that enhances further light scattering. This is the self-

organization.

Similar numerical calculations can be done for

smaller values of the transverse pump η. The range of

gain values containing the self-organization threshold

can be determined in a series of numerical tests. The

results of these tests are summarized in Fig. 4. The er-

ror bars on the plot represent the range of Γ values

containing the threshold value. The important conse-

quence of these results is the possibility to observe the

self-organization even for very small pump η by appro-

priate choice of the gain Γ. Physically, this means that

the collective recoil effect, that gets small in this limit,

is not necessary for the self-organization to occur. The

feedback control of the potential seem to be able to or-

ganize the atoms into the Bragg-grating even without

the help of collective recoil.
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Fig. 4. The lower curve represents the estimation of the

threshold gain Γ as a function of pump η based on the

simulations results. The upper curve is Γ ∼ 1/η2, that

corresponds to the dependence of the threshold gain value

on the pump without collective recoil

On the other hand, the recoil effect considerably

stimulates the transition to the self-organized phase. Ar-

tificially omitting the collective recoil effect by removing

the corresponding terms from Eq. (9) one can see that

the single parameter that describes the system can be

introduced. This parameter is the combination εη
√
Γ.

Thus the threshold in the absence of collective recoil

should depend on the whole combination. Then the de-

pendence of the threshold value of the gain Γ on η should

be of the form Γ ∼ 1/η2. This dependence is shown in

Fig. 4 with the dashed curve. The simulation results that

take the collective recoil into account, solid line with er-

ror bars in Fig. 4, considerably deviate from the dashed

curve for large transverse pump η. One sees that smaller

gain Γ is required if the collective recoil effect is strong.

For very small η the collective recoil is negligible and

the simulated dependence Γ(η) approaches the simple

limit 1/η2.

In conclusion, we propose to use feedback to enhance

the self-organization of the atoms in a cavity-induced

dipole potential. The feedback is based on the measure-

ment of the field leaking the cavity and the appropriate

change of the cavity-induced potential. Starting with

the fully quantum theory we identify quantum noise

sources that appear to be independent on the feedback

gain. Then we performed numerical simulations in the

classical approximation with only three atomic modes,

corresponding to odd and even potential wells and the

intermediate space.

Numerical simulations showed that the feedback

allows to reach atomic self-organization in the cases

where it is otherwise impossible. Furthermore, numer-

ical tests made for different transverse pump ampli-

tude η showed that providing necessary feedback gain

the self-organization can be observed even for rather

small transverse pump. This indicates that the effect of

the atomic collective recoil is not crucial for the self-

organization.
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