
Pis’ma v ZhETF, vol. 100, iss. 8, pp. 549 – 551 c© 2014 October 25

The robust impact parameter profile of inelastic collisions
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It is shown that the impact parameter profile of inelastic hadron collisions is robust to admissible varia-

tions of the shape of the diffraction cone of elastic scattering. This conclusion is obtained using the unitarity

condition and experimental data only with no phenomenological model inputs.
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The impact parameter profile of inelastic high en-

ergy hadron collisions is determined as the probability

of such reactions to take place at definite impact param-

eters at a given energy (see, e.g., [1]). It can be derived

from the unitarity condition if the properties of the elas-

tic scattering amplitude are known. We show that its

general features are robust to variations of the shape of

the differential cross section of elastic scattering with

the transferred momentum and total energy measured

experimentally.

The impact parameter profiles of elastic and inelas-

tic hadron collisions are not directly measurable but

they help us visualize the geometrical picture of par-

tonic interactions indicating their space extension and

the intensity. Our intuitive guesses about the space-time

development of these processes can be corrected in this

way. The inelastic profile G(s, b) is a function of the en-

ergy s = 4E2, where E is the total energy of colliding

particles in the center of mass system, and of the im-

pact parameter b, which represents the transverse dis-

tance between their centers. It is determined from the

unitarity condition in a following way

G(s, b) = 2ReΓ(s, b)− |Γ(s, b)|2, (1)

where

iΓ(s, b) =
1

2
√
π

∫ ∞

0

d|t|f(s, t)J0(b
√

|t|) (2)

is the elastic profile defined by the Fourier–Bessel trans-

form of the elastic scattering amplitude f(s, t) which de-

pends on energy and the transferred momentum squared

−t = 2p2(1− cos θ) (3)

with θ denoting the scattering angle in the center of

mass system and p the momentum.
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The left-hand side of (1) called the overlap function

describes the impact parameter profile of inelastic colli-

sions of protons. Its widths shows the spatial extension

of the region of inelastic interactions. It satisfies the in-

equalities 0 ≤ G(s, b) ≤ 1 and determines how absoptive

is the interaction region depending on the impact pa-

rameter (with G = 1 for full absorption). If integrated

over the impact parameters, (1) leads to the general

statement that the inelastic cross section equals to the

difference of the total and elastic cross sections.

The differential cross section of elastic scattering

dσ/dt measured in experiments is related to the scat-

tering amplitude f(s, t) in a following way

dσ

dt
= |f(s, t)|2. (4)

The shape of dσ/dt varies with energy. However, there

are some common features typical at high energies. Par-

ticles are elastically scattered mostly at small trans-

ferred momenta within the so-called diffraction peak.

It is roughly approximated by the exponential shape

dσ

dt
∝ e−B|t| (5)

with the slope B depending on energy s and slightly

varying with the transferred momentum t.

Moreover, the real part of the amplitude is small

compared to the imaginary part within the diffraction

cone at high energies. At the LHC, their ratio in forward

direction ρ0 is equal to 0.1 [2]. It decreases within the

cone and crosses the abscissa axis according to all phe-

nomenological models and general statements of Ref. [3].

That is why it is possible to neglect this ratio in Eq. (2)

where it enters weighted by the suppressing exponen-

tial factor. The corresponding corrections to G(s, b) are

quadratic in ρ. Surely, they are smaller than one percent

and will not be considered in what follows.
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If one neglects for some time by the dependence B

on t, the inelastic profile looks as

G(s, b) =
2

Z
exp

(

− b2

2B

)

− 1

Z2
exp

(

−b2

B

)

, (6)

where Z = 4πB/σt.

It is important that at any high energy from ISR

to LHC the differential cross section becomes 4 or 5 or-

ders of magnitude smaller before the exponential regime

(5) is replaced by another slower decreasing behavior at

larger transferred momenta (the Orear region). There-

fore, the role of this tail is negligible for the profile

G(s, b) since its contribution to the integral in Γ(s, b)

(2) is extremely small.

The variations of the slope within the diffraction

cone can be only important. As was observed in ex-

periments, they are twofold. The slope itself can change

its value with the transferred momentum or/and there

appear some oscillations imposed over its smooth shape.

At ISR energies, it was shown [4–7] that the slope be-

comes smaller at |t| > (0.12−0.15)GeV2 and the ex-

ponent in (5) can be approximated more accurately by

Bt+Ct2 with positive C or by the sum of two exponen-

tial terms with exponents differing by about 1.5 GeV−2.

The accuracy of the data is not enough to distinguish

between these fits. At LHC energies, the slope becomes

larger at |t| > 0.36GeV2 [8] so that C < 0 or, in the case

of two exponential terms, the exponents differ approxi-

mately by the same amount but with the opposite sign.

Anyway, the impact of these variations on the inelastic

profile at the LHC is very small as shown in Fig. 1a of

Ref. [9] where its shapes are calculated either directly

from experimental data or from their simple approxi-

mation by (5). They are almost indistinguishable.

Another interesting feature of the slope behavior was

studied at the energy
√
s ≈ 11GeV in Refs. [10, 11] re-

viewed in Ref. [12]. Slight oscillations with t in the be-

havior of B at the level of 5–10 % were noticed. Some

decline from the simple exponential form can be also

seen at ISR energies if carefully studied. It is intended

to be studied with more precision again at Protvino en-

ergies about 11 GeV. This effect should be looked for at

the LHC energies as well.

The corrections ∆G to the profile G(s, b) are con-

nected with the corrections ∆Γ to Γ in a following way

∆G(s, b) = 2∆Γ(1− Γ) = 2∆Γ

[

1− 1

Z
exp(−b2/2B)

]

.

(7)

At the LHC, where Z = 1, no corrections appear at

the center b = 0 but all of them are shifted to the tail

of the impact parameter distribution. That shows their

peripheral origin.

The impact of oscillations on the behavior of G(s, b)

can be estimated if we approximate this decline by the

simplest oscillating function inserted in (2), (1) so that

G(s, b) is changed by the amount

∆G(s, b) = a

[

1− 1

Z
exp(−b2/2B)

]

×

×
∫ ∞

0

d|t| exp(Bt/2)J0(b
√

|t|) cos[κ(|t| − |t0|)] =

= a

[

1− 1

Z
exp(−b2/2B)

]

2B

B2 + 4κ2
×

× exp

[ −b2B

2(b2 + 4κ2)

]

(

cosu− κ

2B
sinu

)

, (8)

where u = κ(|t0| + b
2

B2+4κ2 ). The amplitude a, posi-

tions of zeros and period of oscillations are estimated

from approximations of Figures shown in Refs. [10–12].

They are a ≈ 0.1; x2
0 ≈ 0.07GeV2; κ ≈ 5πGeV−2.

These corrections to the inelastic profile at the LHC

with B ≈ 20GeV−2 are of the order of one percent

or even less. They can reveal themselves at very high

impact parameters where the profile values are small.

The oscillations were ascribed in Ref. [13] to the inelas-

tic diffraction processes possessing the peripheral origin.

Thus, the main structure of the inelastic profile in

proton collisions remains quite intact. Its general fea-

ture at LHC energies is the widely spread black re-

gion at b ≤ 0.5Fm which reveals itself in properties of

jets produced in very high multiplicity events [9]. Even

though the corrections are small, the fine structure of

the profile should be further studied. It can open ways

to identification of various classes of inelastic processes

with different regions of impact parameters. More pre-

cise data about the substructure of the diffraction peak

in t-variable are necessary to relate them with inelastic

processes of different kinds.

Let us stress once more that the unitarity condi-

tion in combination with experimental data about elas-

tic scattering within the diffraction cone was only used

without any reference to QCD ideas or phenomenologi-

cal models.

This short note is inspired by the discussion

with M.G. Ryskin at the conference NSQCD2014 in

Gatchina. This work was supported by the Russian

Foundation for Basic Research (project # 12-02-91504-

CERN-a and # 14-02-00099) and jointly by the Russian
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