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A strip of the 2D HgTe topological insulator is studied. The same-spin edge states in an ideal system

propagate in opposite directions on different sides of the strip and do not mix by tunneling. Impurities, edge

irregularities, and phonons produce transitions between the contra- propagating edge states on different edges.

This backscattering determines the conductivity of an infinitely long strip. The conductivity at finite temper-

ature is determined in the framework of the kinetic equation. It is found that the conductivity exponentially

grows with the strip width. In the same approximation the non-local resistance coefficients of a 4-terminal

strip are found.

DOI: 10.7868/S0370274X1421005X

Introduction. Topological insulator (TI) is a novel

actively developing field of the solid state physics (see,

e.g., reviews [1, 2] and references therein). The main

property of TI is topological protection of the edge

states that is the spin conservation together with the di-

rection of propagation. As a consequence, the nonlocal

transport appears and the conductance at zero temper-

ature is quantized.

The topological protection (TP) is a rigorous con-

sequence of the time reversibility. In mathematical for-

mulation single-electron elastic backscattering processes

are forbidden due to conservation of the Z2 topologi-

cal index in the systems with an odd number of edges

[3, 4, 5], in particular in the case of a single edge. The

single-edge states stay robust against not only elastic

scattering but against the inelastic phonon scattering [6]

both for non-interacting electrons and for Tomonaga–

Luttinger liquid. On the contrary, the inclusion of the

random Rashba spin-orbit coupling together with the

e–e interaction opens the backscattering channel in in-

traedge e–e scattering [7]. The intraedge e–e backscat-

tering also appears due to k-dependent Rashba inter-

action [8]. Another variant of non-magnetic intraedge

backscattering is two-particle impurity scattering [9]. In

macroscopic 2D TI the backscattering appears with par-

ticipation of electron puddles inside the sample [10, 11].

All these inelastic processes manifest themselves at fi-

nite temperature. However, the elastic transitions be-

tween contra-propagating states can occur if the system
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possesses multiple edges (at least two on different sides

of the strip), e.g. in the region of the strip constriction

owing to non-adiabatic tunneling [12].

In sufficiently wide strips the elastic interedge

backscattering processes are weak. However, they ex-

ist due to disorder. There are no papers considering the

disorder-induced interedge transitions so far.

The experimental evidence of the edge (and quan-

tized) character of the transport in macroscopic HgTe

quantum wells was presented in [13]. The destruction

of the quantized conductance by a weak magnetic field

shows that these properties are clearly connected with

time reversibility. The experiments on the local and

non-local conductance of 2D HgTe TI have been re-

cently made [14, 15]. The authors demonstrate that the

backscattering length in TI reaches macroscopic values

up to 1 mm. At the same time, the authors consider

that the violation of the topological protection can be

caused by spin-flip processes.

In the present paper we study the free-electron inter-

edge backscattering in a narrow 2D TI strip caused

by non-magnetic impurities, edge imperfectness, and

phonons and the influence of backscattering on conduc-

tivity. The paper is organized as follows. First, we find

the electron states in a clean strip. Then, we consider

the scattering of edge electrons. Here we will study the

problem in the framework of the kinetic equation. The

contra-propagating edge states are assumed as the ba-

sic states for the kinetic equation. The backscattering

mean free time determines the conductivity of the in-

finitely long system. We examined the backscattering
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mechanisms caused by the impurities, the border im-

perfectness and phonons. Then we studied the non-local

4-terminal resistance of the TI strip. And after that we

discuss the results.

We will neglect the e–e interaction that is justifiable

if the e–e interaction constant is small.

Problem formulation. The considered system is a

strip of 2D TI from the CdTe/HgTe/CdTe quantum well

(see Figure). The strip in the (x, y) plane is determined

Sketch of the TI strip. Edge states are darkened. The

directions of velocity v correspond to Σz = 1/2. (For

Σz = −1/2 the directions are opposite.) A and B are the

contacts for 2-terminal conductance measurement, 1–4 are

contacts for the 4-terminal measurement of non-local con-

ductance

by inequalities −L/2 < x < L/2, −L/2 < y < L/2,

L ≫ L. We suppose zero boundary conditions on the

edges y = ±L/2 and periodic conditions on x = ±L/2.
Our study is based on the effective 2 × 2 edge-states

Hamiltonian Ĥ0 = vσ̂zkx, where σ is the Pauli matrix,

~ = 1. This Hamiltonian can be deduced [16] from the

initial 2D Hamiltonian for a CdTe/HgTe/CdTe quan-

tum well [17]:

H(k) =

(

H(k) 0

0 H∗(−k)

)

,

H(k) = ǫk + dσ, (1)

where ǫk = −D(k2x + k2y), dx = Akx, dy = Aky , dz =

= M(k) =M −B(k2x + k2y). Parameters A,B,D,M are

determined by the material parameters and the thick-

ness of the quantum well. The upper and lower blocks

of the Hamiltonian belong to the Kramers-degenerate

states jz = 1/2, 3/2 and jz = −1/2, −3/2 of the 4-fold

state j = 3/2 of the bulk HgTe zero-momentum point.

These blocks can be numerated by the spin quantum

number Σz = ±1/2 corresponding to the spin Σ degree

of freedom. Owing to the Kramers degeneracy it is suf-

ficient to solve the Schrödinger equation for the upper

block of Eq. (1) corresponding to Σz = 1/2. In the case

of small longitudinal momenta kx (axis x is chosen along

the strip) and large enough width L one can write for

the energy spectrum and wave functions [16]:

Ψkx;σ(x, y) =
eikxx

√
L
ψσ(y),

ψσ(y) = c̃σgσ(y)(1,−ση), (2)

gσ(y) = [f+(y)− σf−(y)].

Here energies Eσ(kx) = σvkx, (σ = ±1) are counted

from E0 = −MD/B, v = A
√

B+B−/B2, B± = B±D,

c̃σ are the normalization constants. The expressions for

f±(y) are given by Eqs. (7), (8) in [16].

In the limit of large L and small kx expressions for

functions gσ(y) are simplified and given by:

gσ(y) ≃ 2[e−λ1L/2−σλ1y − e−λ2L/2−σλ2y]. (3)

The quantity σ is conserved in a clean system and

one can consider σ/2 as a pseudospin. Functions ψσ(y)

exponentially decay from the edges y = −σL/2, corre-

spondingly. Functions with different σ are weakly over-

lapped with each other if λ1,2L ≫ 1. In fact, the wave

functions given by Eqs. (2), (3) correspond to insulated

edges. This approximation is valid for a sufficiently large

electron energy exceeding the gap ∆ [16]:

|E| ≫ ∆ = 4
|AB+B−M |

√

B3(A2B − 4B+B−M)
e−λ2L.

Due to the exponential decay of ∆ with increase of L

this limitation can be easily fulfilled.

The presence of disorder (impurities, edge rough-

ness, phonons) leads to the transitions between edge

states with different σ. Decay rate λ1 is larger than λ2.

In the limit of a large L this permits to keep only one

exponent with λ2 in gσ(y) when one calculates overlap-

ping integrals.

In the same approximation for η, c̃σ, and λ1,2 we

have

η2 =
B+

B−

, c̃2+1 ≃ c̃2−1 ≡ c̃2 =
AMB−

√

B+B−

4B(A2B − 4MB+B−)
,

(4)

λ1,2 =
A

2
√

B+B−

±
√

A2

4B+B−

− M

B
, (5)

λ1 + λ2 =
A

√

B+B−

, λ1λ2 =
M

B
.

The basic Hamiltonian results from the 2D Hamil-

tonian (1) when λ1,2 ≫ kx, 1/L. It should be comple-

mented by the potential of interaction with defects. In

the same representation the potential is given by the

2× 2 matrix Û(x) with matrix elements being equal to
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Uσ′σ(x) = 〈ψσ′ (y)|U(x, y)|ψσ(y)〉 which are composed

by a projection of the potential to the states ψσ(y).

This matrix depends on coordinate x only. The total

edge-state Hamiltonian reads

Ĥ = −ivσ̂z∂x + Û(x). (6)

Impurity scattering. In the kinetic approach the

conductivity is caused by the transitions of electrons

between the edge states. In this section we will find the

transition probability under scattering on the impurities

located inside the strip. The potential energy of inter-

action of an electron with impurities is given by

Uimp =
∑

n

un(r) =
∑

n

u(r− rn) =
∑

q,n

ũqe
iq(r−rn),

(7)

where ũq =
∫

u(r)e−iqrdr/S is the Fourier transform of

the potential of an individual center, S = LL is the area

of the system.

We will be interested in transitions with backscat-

tering. The necessary matrix elements of corresponding

matrix Û(x) can be written as

U+1;−1(x) = U−1;+1(x) = c̃2(1− η2)×

×
∑

q,n

ũqe
iqx(x−xn)−iqyyn

∫ L/2

−L/2

dyg+1(y)g−1(y)e
iqyy.(8)

Again, in case of a large L one can find an approximate

expression for
∫

dyg+1(y)g−1(y)e
iqyy at λ1 > λ2:

∫

dyg+1(y)g−1(y)e
iqyy ≃ δqy,0 · 4Le−λ2L. (9)

As a result for the electron interaction with an individ-

ual impurity, we have

uσ;−σ(x) = 4Le−λ2Lc̃2(1− η2)
∑

qx

ũqx,0e
iqxx. (10)

Using Eq. (10) we can write the transition probabil-

ity between states |k′x;σ〉 and |k′x;−σ〉 as follows:

W
(imp)
k′

x
,−σ;kx,σ

=

= 32πNc̃4(1− η2)2|ũ−2kx,0|2L2e−2λ2Lδ[v(k′x + kx)], (11)

where N is the total number of scattering centers. In

Eq. (11) averaging over distribution of impurities have

been carried out. Eq. (11) can be presented in the form:

W
(imp)
k′

x
,−σ;kx,σ

=
π

Lτ δ(k
′

x + kx), (12)

where we have introduced the relaxation time due to

impurity scattering:

1

τ
=

8ns

v
|¯̃u2kx,0|2Le−2λ2Lλ22a,

a =

[

1− η2

1 + η2
λ1(λ1 + λ2)

(λ1 − λ2)2

]2

.

Here ũq = ¯̃uq/(LL), ns = N/S is the impurity concen-

tration.

Scattering on edge imperfections. Let the edges

be imperfect, namely having shapes y = σL/2 + hσ(x),

where hσ(x) are random functions with correlators

〈hσ(x)hσ′ (x′)〉 = wσδ(x − x′)δσ,σ′ . Electron interaction

with roughness of edges is determined by the pseudo-

potential [18, 19]:

Uedge =
1

2m

∑

σ

hσ(x)k̂yδ(y + σL/2)k̂y. (13)

On the analogy with the impurity case we obtain for the

transition probability caused by the edge imperfectness

Eq. (12) with replacement of the relaxation time by

1

τ
=

8

m2v
(w+1 + w−1)e

−2λ2Lλ42(λ1 − λ2)
2a. (14)

The order of wσ is determined by the typical height h0
and width w0 of roughness: wσ ∼ h20w0.

Conductivity. Let us consider a long strip in a lon-

gitudinal external electric field E . The linearized kinetic

equation for the edge state electrons is:

σeEv ∂f0[Eσ(kx)]

∂E
=
∑

k′

x

Wk′

x
,−σ;kx,σ(χσ,k′

x
− χσ,kx

).

(15)

Here fσ,kx
0[Eσ(kx)]+χσ,kx

is the distribution function,

f0[Eσ(kx)] is the Fermi function. Eq. (15) is easily solved

using identity χ−σ,−kx
= −χσ,kx

:

χσ,kx
= −σeE ∂f0[Eσ(kx)]

∂E
vτ, (16)

where τ is the relaxation time. For 1/τ one should utilize

the sum of scattering rates due to all considered mecha-

nisms. As a result, we obtain the classical conductivity

of degenerate electron gas G0l and the corresponding

conductance of a finite strip G0l/L expressed via the

conductance quantum G0 = 2e2/h and the mean free

path l = vτ at the Fermi energy.

Phonon mechanisms of electron backscatter-

ing. The impurity scattering conserves the phase co-

herence and hence, strictly speaking, cannot be consid-

ered within the kinetic equation approach. However, this

is not the case when any decoherence factor is taken

into account. A sufficiently strong decoherence revives

the kinetic equation’s applicability. Below we consider

the backscattering of electrons by phonons. Note, that

at high enough temperature, the phonon backscatter-

ing can be considered in the same way as the impu-

rity scattering neglecting the emitted phonon frequency
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as compared to the temperature. The Hamiltonian of

electron-phonon interaction is

He−ph =
∑

k,σ,k′σ′,q

cqJqzJqy ;σ′σa
+
σ′,k′aσ,kb

+
q
δk′−k,qx + h.c.

(17)

Here a+σ,k, aσ,k are the edge electron cre-

ation/annihilation operators, b+
q
, bq are the cre-

ation/annihilation operators of bulk longitudinal acous-

tic phonons with 3D momentum q, cq = Λq/
√

2ρωqΩ,

Jqy ;σ′σ = 〈σ′|eiqyy|σ〉, Jqz =
∫

dzζ2(z), where Λ is

the deformation potential constant, ρ is the crystal

density, Ω is the system volume, ωq = cq is the

phonon frequency (c being the sound velocity), ζ(z) is

the ground state wave-function of the quantum well

CdTe/HgTe/CdTe. In our consideration it is assumed

that electrons interact by the deformation potential

with the bulk longitudinal acoustic phonons only; the

difference between HgTe and CdTe elastic constants

and deformation potentials is neglected.

Similar to Eq. (11), we have found the interedge

(σ → −σ) transition probability caused by the phonons.

As a result, instead of Eq. (), we have for the backscat-

tering time

1

τ
=

8Λ2LTλ22e
−2λ2L

vρc2
a

∫

ζ4(z)dz. (18)

The integral in Eq. (18) has the order of the inverse

quantum well width 1/d. (It should be noted that,

in contrast to the impurity scattering, the scattering

due to phonons requires accounting for the transversal

(i.e. along z) structure of the edge state.) In deducing

Eq. (18), we have utilized the condition that tempera-

ture T is much higher than the characteristic frequency

of emitted phonons c/d. The phonon-induced backscat-

tering grows with the temperature and has the same

smallness caused by the overlapping of edge states as

the impurity scattering. Note, that the electron-phonon

scattering rate Eq. (18) can be found by replacement

of the total impurities number by the phonon distri-

bution function and the corresponding replacement of

the interaction constant. For conductivity one should

collect the relaxation rates caused by impurities, edges

and phonons together.

Now go to the forward phonon-induced scattering

σ → σ. This process, being essentially stronger than

the backscattering, conserves the electron velocity and,

hence, does not affect the kinetics. The role of the for-

ward scattering is to control the phase coherence in the

system, namely electron dephasing time τφ.

The validity of the kinetic regime needs τφ(T ) ≪ τ ,

vice versa the localization occurs if τφ(T ) ≫ τ ; the tran-

sition between these regimes occurs when τφ(T ) ∼ τ ,

where τ in the low-temperature limit does not depend

on T . A more detailed consideration goes beyond the

scope of this paper.

Discussion. In conclusion, we have found the con-

ductivity of the infinitely long strip of the 2D TI. At fi-

nite temperature the kinetic equation approach is valid.

In this approximation the conductivity is determined

by the mean free path due to the interedge backscat-

tering on impurities, edge imperfections and phonons.

The non-local 4-terminal resistance coefficients have

been also found. The validity of the kinetic-equation

approach is limited by the dephasing caused by the

phonon-induced intraedge scattering. At low enough

temperatures the kinetic-equation approach becomes in-

valid and should be replaced by the consideration based

on the localization of electrons; this situation and the

dephasing mechanism at higher temperature will be

studied later on.

Thus, we demonstrated that a long TI strip like 1D

wire of usual conductor possesses the finite conductiv-

ity at high temperatures in presence of the interedge

scattering. The difference with a quantum wire consists

in exponentially long (with respect to the strip width)

mean free path.

Let us discuss the correspondence with the experi-

mental measurements [14, 15]. In experiments [14, 15] it

was found that the conductivity of a macroscopic 2D TI

is: i) non-local, ii) non-quantized, and iii) temperature-

independent at low temperature. Feature i) means the

edge character of conductivity while, ii) means deflec-

tion from the ballistic transport due to the backscat-

tering. Feature iii) indicates the impurity mechanism

of the backscattering. Very large macroscopic backscat-

tering length in [14] suggests a weak influence of spin-

flip scattering. The macroscopic system in [14, 15] is

not the narrow strip considered here. In a macroscopi-

cally wide device the transitions between the strip edge

are forbidden. However, we think that the real TI can

have many puddles of a normal semiconductor phase

due to the fluctuations of the HgTe quantum well thick-

ness. These puddles provide the existence of multiple

inner edges between TI and a normal semiconductor.

The chain of transitions between these edge states shall

produce a transition to the other external edge with the

opposite direction of motion. If the impurities (edge im-

perfections) give the main contribution to this process

in conditions of destroyed coherence, one may expect

no temperature dependence of the conductivity in ac-

cordance with [14, 15]. This possibility is alternative to

the process discussed in [10, 11].

It should be emphasized that our consideration is

limited by the case when the electron energy exceeds
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the gap caused by interaction between edges. This limi-

tation is not critical due to the exponentially small gap

value. Note also, that we have neglected the spin non-

conservation caused by the spin- orbit interaction, mag-

netic impurities, and superfine interaction. These mech-

anisms go beyond the paper’s scope, but look weaker

than considered ones.
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