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Localization of edge electrons in a 2D topological insulator strip
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The edge states in an ideal topological insulator are topologically protected. The same-spin edge states

propagate in opposite directions on different sides of the strip and do not mix by tunneling. The interaction

with impurities results in interedge same-spin backscattering. At low temperatures, the localization occurs and

the conductance of a long wire vanishes. We study this localization in a numerical model of localized scatter-

ers. The localization length is found to be exponentially long with respect to the strip width. The intraedge

inelastic forward scattering destroys the coherence. These processes caused by phonons were explored. The

transition temperature between kinetic and localization behaviors has been found.
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Introduction. Topological insulator (TI) is the

novel object of solid state physics. It attracted a sig-

nificant interest and gave birth to a wide publication

activity (see, e.g., reviews [1, 2] and references therein;

more recent references see in [3]). Topologically insu-

lated states appear near the edges of a TI macroscopic

sample. As a result of topological invariance, the edge

states are insulated from the backscattering by spin

conservation. Such macroscopic system has a quantized

conductance. The situation does not change in an ideal

(clean) strip. In a narrow strip overlapping of the edge

states mixes the states with the same momentum and

spin on different strip sides with opposite directions of

motion. Edge state electrons with a fixed energy and

momentum move in a fixed direction preferably along

one edge of the sample. At the same time, the presence

of disorder leads to backscattering and establishment of

a kinetic conductivity [3] at a finite temperature. How-

ever, the low temperature situation has not been studied

yet. It is apparent that the presence of conservative dis-

order will lead to the phase-coherent accumulation of

backscattering events and, as a result, to the localiza-

tion of the edge states.

The present paper is a continuation of our previ-

ous paper [3] where the backscattering on impurities,

phonons and edge imperfectness was considered within

framework of the kinetic equation. This approach is

valid at a finite temperature when the phonon deco-

herence destroys the localization of the electron states.

Vice versa, at zero temperature, the localization occurs,

the studying of it is the purpose of the present paper.

1)e-mail: entin@isp.nsc.ru

Besides, we shall consider dephasing due to the forward

scattering by phonons, which determines the threshold

between the kinetic and localization regimes. We shall

find the localization length of the narrow strip of 2D

TI with impurities and the temperature of transition

between the kinetic and localization regimes.

Localization at low temperature. Here we shall

study the edge electron states in a narrow strip of the 2D

topological insulator HgTe with impurities at low tem-

peratures. In presence of phase coherence the quantum

approach based on the localization theory [4] is needed.

We deal with the 2D HgTe strip in the (x, y)-plane

−L/2 < x < L/2, −L/2 < y < L/2, L ≫ L with

zero conditions for the wave functions at y = ±L and

cyclic conditions at x = ±L. Our study is based on the

effective 2× 2 edge-states Hamiltonian

Ĥ = −ivσ̂z∂x + Û(x). (1)

Here Û(x) =
∑

n ûn(x − xn) is a 2 × 2 matrix of the

total potential, ûn(x − xn) are potentials of individual

impurities situated in points (xn, yy). The matrix ele-

ments of Û(x) and ûn(x−xn) are given by a projection

of the potential U(x, y) =
∑

n u(x − xn, y − yn) onto

the transversal wave functions of edge states ψσ(y) (see

Eqs. (2), (3) from [3]).

In the absence of the potential, the solutions of

the stationary Schrödinger equation (Ĥ − E)ξ = 0 are

ξk,σ = eikx(1 + σ, 1 − σ)/2 with energy Ek,σ = σvk.

The matrix of potential Û(x) mixes the states of dif-

ferent edges. With account for the diagonal elements of

the potential Uσ,σ(x) only, the stationary solutions with

the same Ek,σ convert to
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ξk,σ = eikx · 1
2

(

1 + σ

1− σ

)

exp

(

−iσ
v

∫

Uσ,σdx

)

. (2)

The wavefunctions (2) contain phase corrections and do

not contain backscattering. To account for the backscat-

tering one should include small non-diagonal elements

Uσ,−σ (Uσ,−σ ≪ Uσ,σ) in the consideration. Thus, the

diagonal matrix elements of U give inessential correc-

tions to the phases.

Let us consider a single impurity located in point

(xn, yn) with potential u(x−xn, y−yn). The off-diagonal

elements of the potential follow from Eq. (10) from [3].

An electron incoming from −∞ in the edge σ = 1 col-

lides with the impurity and can pass to the edge σ = −1

with reversion of the momentum k → −k and the direc-

tion of motion. Alternatively, the electron can pass to

∞ conserving k and σ.

To find the amplitude of these processes, one should

solve the stationary Schrödinger equation with bound-

ary conditions ξ = (eikx, rne
−ikx) at x → −∞ and

ξ = (tne
ikx, 0) at x → ∞, where tn and rn are ampli-

tudes of transmission and reflection, accordingly. The

unitarity yields |rn|2 + |tn|2 = 1.

In particular, solving the Schrödinger equation in the

first Born order, we have

rn = (1/v)e2ikxn

∫ ∞

−∞

e2ikxu1,−1(x)dx,

u1,−1(x) =

∫

dyψ1(y)u(x, y − yn)ψ−1(y). (3)

In this approximation rn ≪ 1, tn ≈ 1. We will as-

sume that the characteristic size of the impurity poten-

tial ρ0 ≪ L. In this case parameters rn = r exp(2ikxn),

where r does not depend on n.

Now, go to the problem of many impurities situated

in points (xn, yn) (n means the impurity number) with

areal density ns. Here we will not restrict ourselves by

the Born case and consider r as a real number between

0 and 1. The wave function between n-th and (n+1)-th

impurities (xn < x < xn+1) is

(ane
ik(x−xn), bne

−ik(x−xn)). (4)

We assume here that between impurities electrons freely

propagate. This requires the absence of impurity poten-

tial overlapping: the mean distance between impurities

along the x-axis (nsL)
−1 is larger than the characteristic

size of impurity potential ρ0. The model under consider-

ation is illustrated in Fig. 1. In points xn electrons meet

the n-th impurity and experience backscatterings. The

scattering by the impurities determines the system of

algebraic equations for an, bn:

Fig. 1. One-dimensional model of electron localization on

the edge states

bne
−iφn = rane

iφn +
√
1− r2bn+1,

an+1 =
√
1− r2ane

iφn + rbn+1. (5)

Here φn = k(xn+1 − xn)
2).

The positions of impurities are random, hence, we

can consider φn as randomly distributed independent

numbers. For modeling, we should assume that φn are

randomly distributed within the range (0, 2π). This as-

sumption is valid at least if x-distance between subse-

quent impurities exceeds 2π/k.

In a matrix form Eq. (5) reads

(

an+1

bn+1

)

= Sn

(

an

bn

)

, (6)

where

Sn =
1√

1− r2

(

eiφn(1− 2r2) re−iφn

−reiφn e−iφn

)

. (7)

Consider a finite strip with N = nsLL impurities in it.

To find the transmission coefficient of the total system

we will act like [4]. Namely, we start from a1 = 0, b1 = 1

(a1 = 0 means no incident wave at n = 1, b1 = 1 means

normalized to unity intensity of the wave transmitted to

the left). Then |bN |−2 gives the transmission coefficient,

G0|bN |−2 is the conductance. The resulting recurrence

is
(

aN

bN

)

=

(

N
∏

n=1

Sn

)(

0

1

)

. (8)

In a large system, ln |bN | ∝ N and the quantity

(nsL)
−1 lim

N→∞
N/(2 ln |bN |)

determines the localization length. The calculated in-

verse localization length (in unites of (nsL)) versus the

amplitude of reflection r is represented in Fig. 2. The

dependence is approximately quadratic, in accordance

2)Note, that the diagonal elements of potential uσ,σ also can

be included in consideration; however, they give corrections to

the phases of transmission and reflection which can be accommo-

dated into φn. The same is valid with respect to the potential of

all impurities Uσ,σ.
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Fig. 2. Inverse localization length (in unites of nsL) versus

the amplitude of reflection r

with the mean free path calculated in the Born approx-

imation.

Phonon mechanism of electron dephasing. The

localization regime considered above requires the coher-

ence of electron wave function. This coherence is vio-

lated by interaction of electrons with phonons. A suffi-

ciently strong decoherence revives the kinetic equation

applicability. To estimate the transition temperature be-

tween these two regimes we need to find the dephasing

time and compare it with the interedge backscattering

time which determines the kinetics.

Here we are based on the Hamiltonian of electron-

phonon interaction presented in [3]. In contrast to [3] we

will deal with the forward same-edge phonon-induced

scattering σ → σ, the role of which is to determine the

electron dephasing time τφ.

We will discuss the phonon mechanism in the

low-temperature limit when the frequency of emit-

ted/absorbed phonons has the order of electron thermal

energy T (in other words, the process is inelastic) and,

hence, τφ coincides with the inelastic forward relaxation

time 3). Noting, that the main contribution to τφ arises

from the forward scattering, we find

τ−1
φ = 2π

∑

±,q,k′

|cq|2|Jqz |2|Jqy ;+1,+1|2δk′,k∓qx ×

× (Nq + 1/2± 1/2)[1− f0(E+1(k
′)]δ(vk − vk′ ∓ cq).(9)

Here f0(E) and Nq are the Fermi and Bose–Einstein

distribution functions, other quantities are described in

[3]. Using relations cq ∼ T , qx ≈ cq/v ≪ q, qy . λ1,2,

3)Note, that strict consideration of the phase coherence requires

the solution of the quantum kinetic equation for the density ma-

trix in σ. Strong dephasing, however, suppresses the off-diagonal

elements of this matrix. As a result, the diagonal elements of the

density matrix become larger than off-diagonal elements; that re-

vives the classical kinetic equation.

qx ≪ qy < q, we obtain at T → 0 Jqz ≈ 1, Jqy ;σ′σ ≈ 1.

Then

τ−1
φ =

Λ2T 3

4πρc4v

∫ ∞

0

x2dx
coth (x/2)(e2ǫ + eǫ)

(eǫ−x + 1)(eǫ+x + 1)
, (10)

where ǫ = (E − EF)/T . Expression (10) is valid if

T ≪ λ2c. The value of τφ depends on the electron en-

ergy. The integral in (10) runs from ≈ 4.2 at ǫ = 0

to ǫ3/3 at ǫ → ∞. The value of τφ averaged with the

derivative of the Fermi function −eǫ/(eǫ + 1)2 gives

〈τφ〉 = 0.354
4πρc4v

Λ2T 3
. (11)

Eq. (11), in fact, gives the mean free time of inelastic

forward scattering which is a reasonable estimation for

τφ. One can see that, at a low temperature, τφ grows

∝ T−3, but does not contain an exponentially large fac-

tor caused by the wave function overlapping.

Let us discuss now the conductivity and conduc-

tance of a strip in the presence of phase decoherence.

In the infinite sample the kinetic description requires

the destruction of coherence between the elastic scat-

tering acts: τφ(T ) ≪ τ , where mean free time τ collects

all scattering mechanisms. Vice versa, the localization

occurs if τφ(T ) ≫ τ . The transition temperature is de-

termined by a relation τφ(T ) ∼ τ , where τ in the low-

temperature limit does not depend on T .

Let now the localization condition τφ(T ) ≫ τ

be valid, but the sample length L exceeds dephasing

length lφ = vτφ. If L ≫ lφ ≫ lloc the sample can

be separated by blocks of length lφ with series resis-

tances exp (lφ/lloc)/G0, so that the conductivity reads

G0 exp (−lφ/lloc)lφ/L. Hence, unlike the zero tempera-

ture case, the conductivity remains finite, but exponen-

tially small.

It should be noted, that the forward-scattering-

induced dephasing caused by phonons have been stud-

ied recently [5] in the systems with linear spectrum,

graphene strips and carbon nanotubes, where backscat-

tering is forbidden. On the contrary, in the 2D TI the

backscattering is weakly permitted, but the dephasing

helps to establishment of the kinetic equation regime.

Discussion and conclusions. We based on the

topological protection of the edge states of an ideal TI

strip. In such system the conductance equals to the

quantum independently on the strip length. However,

we demonstrated that at a low temperature, in the pres-

ence of the interedge scattering, a long TI strip, like 1D

wire of conventional conductor, experiences the localiza-

tion of the edge states, and the conductance exponen-

tially tends to zero with increase of the strip length. The

localization length becomes exponentially long with re-

spect to the strip width. This understanding resolves the
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imaginary contradiction between the localization theory

and the topological protection.

In addition, we examined the validity limit of local-

ization approach due to the dephasing caused by the

phonon-induced intraedge forward scattering. The de-

phasing leads to the finite conductivity of the system.

In the case when the dephasing length is less than the

localization length (and also the dephasing length is less

than the sample length) the regime of kinetic equation

applicability is established. This condition is easy to

be fulfilled due to the exponentially large localization

length.
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