Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-120
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 100 (2014) | ISSUE 11 | PAGE 787
Blind search for radio-quiet and radio-loud gamma-ray pulsars with Fermi-LAT data
Abstract
The Fermi Large Area Telescope (LAT) has observed more than a hundred of gamma-ray pulsars, about one third of which are radio-quiet, i.e. not detected at radio frequencies. The most of radio-loud pulsars are detected by Fermi LAT by using the radio timing models, while the radio-quiet ones are discovered in a blind search. The difference in the techniques introduces an observational selection bias and, consequently, the direct comparison of populations is complicated. In order to produce an unbiased sample, we perform a blind search of gamma-ray pulsations using Fermi-LAT data alone. No radio data or observations at optical or X-ray frequencies are involved in the search process. We produce a gamma-ray selected catalog of 25 non-recycled gamma-ray pulsars found in a blind search, including 16 radio-quiet and 9 radio-loud pulsars. This results in the direct measurement of the fraction of radio-quiet pulsars \varepsilon_{\text{RQ}} = 64\pm 10 \%, which is in agreement with the existing estimates from the population modeling in the outer magnetosphere model. The Polar cap models are disfavored due to a lower expected fraction and the prediction of age dependence. The age, gamma-ray energy flux, spin-down luminosity and sky location distributions of the radio-loud and radio-quiet pulsars from the catalog do not demonstrate any statistically significant difference. The results indicate that the radio-quiet and radio-loud pulsars belong to one and the same population. The catalog shows no evidence for the radio beam evolution.