Magnetic order and spin excitations in layered Heisenberg antiferromagnets with compass-model anisotropies

A. A. Vladimirov, D. Ihle ${ }^{+}$, N. M. Plakida ${ }^{1)}$
Joint Institute for Nuclear Research, 141980 Dubna, Russia
+ Institut für Theoretische Physik, Universität Leipzig, D-04109 Leipzig, Germany

Submitted 2 October 2014

Abstract

The spin-wave excitation spectrum, the magnetization, and the Néel temperature for the quasi-twodimensional spin- $1 / 2$ antiferromagnetic Heisenberg model with compass-model interaction in the plane proposed for iridates are calculated in the random phase approximation. The spin-wave spectrum agrees well with data of Lanczos diagonalization. We find that the Néel temperature is enhanced by the compass-model interaction and is close to the experimental value for $\mathrm{Ba}_{2} \mathrm{IrO}_{4}$.

DOI: 10.7868/S0370274X14240059

Spin-orbital physics in transition-metal oxides has been extensively studied in recent years. A number of theoretical models was proposed to describe a complicated nature of phase transitions induced by competing spin and orbital interactions as originally was considered in Ref. [1]. Whereas the isotropic spin interaction can be treated within the conventional Heisenberg model, to study the orientation-dependent orbital interaction the compass model is commonly used. The latter reveals a large degeneracy of ground states resulting in a complicated phase diagram. In particular, quantum and thermodynamic phase transitions in the two-dimensional (2D) compass model were studied in Refs. [2-4], where a first-order transition was found for the symmetric compass model. A generalized 2D Compass-Heisenberg (CH) model was introduced in Ref. [5], where an important role of the spin Heisenberg interaction in lifting the high degeneracy of the ground state of the compass model was stressed. In Ref. [6] a phase diagram of the CH model and excitations within Lanczos exact diagonalization for finite clusters on a square lattice were considered in detail. In particular, spin-wave excitations and column-flip excitations in nanoclusters characteristic to the compass model were analyzed.

A strong relativistic spin-orbital coupling reveals a compass-model type interaction in $5 d$ transition metals. In particular, it was shown in Ref. [7], that a strong spin-orbit coupling in such compounds as $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$ and $\mathrm{Ba}_{2} \mathrm{IrO}_{4}$ results in an effective antiferromagnetic (AF) Heisenberg model for the pseudospins $1 / 2$ with the compass-model anisotropy. The model can be used to

[^0]explain the AF long-range order (LRO) below the Néel temperature $T_{\mathrm{N}}=230 \mathrm{~K}$ in $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$ and $T_{\mathrm{N}}=240 \mathrm{~K}$ in $\mathrm{Ba}_{2} \mathrm{IrO}_{4}$ (see, e.g., [8]). The spin-wave spectrum measured by magnetic resonance inelastic x-ray scattering (RIXS) in $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$ shows a dispersion similar to that one in the undoped cuprate $\mathrm{La}_{2} \mathrm{CuO}_{4}[9]$.

In the present paper we calculate the spin-wave excitation spectrum and magnetization for a layered AF Heisenberg model with anisotropic compass-model interaction in the plane. To take into account the finitetemperature renormalization of the spectrum and to calculate the Néel temperature T_{N}, we employ the equation of motion method for the Green functions (GFs) for spin $S=1 / 2$ using the random phase approximation (RPA) [10]. The results are compared with experimental data for iridates and theoretical studies of the 2D CH model in Ref. [5].

We consider the layered Heisenberg AF with the compass-model interaction in the plane. The Hamiltonian of the model can be written as

$$
\begin{equation*}
H=\frac{1}{2} \sum_{i, j}\left\{J_{i j} \mathbf{S}_{i} \mathbf{S}_{j}+\Gamma_{i j}^{x} S_{i}^{x} S_{j}^{x}+\Gamma_{i j}^{y} S_{i}^{y} S_{j}^{y}\right\} \tag{1}
\end{equation*}
$$

Here $J_{i j}=J\left(\delta_{\mathbf{r}_{j}, \mathbf{r}_{i} \pm \mathbf{a}_{x}}+\delta_{\mathbf{r}_{j}, \mathbf{r}_{i} \pm \mathbf{a}_{y}}\right)+J_{z} \delta_{\mathbf{r}_{j}, \mathbf{r}_{i} \pm \mathbf{c}}$, where J is the exchange interaction between the nearest neighbors in the plane with the lattice constants $a_{x}=a_{y}=a$, and J_{z} is the coupling between the planes with the distance c. The compass model interaction is given by $\Gamma_{i j}^{x}=\Gamma_{x} \delta_{\mathbf{r}_{j}, \mathbf{r}_{i} \pm \mathbf{a}_{x}}, \Gamma_{i j}^{y}=\Gamma_{y} \delta_{\mathbf{r}_{j}, \mathbf{r}_{i} \pm \mathbf{a}_{y}}$. The ab initio many-body quantum chemistry calculations give the following parameters for $\mathrm{Ba}_{2} \mathrm{IrO}_{4}: J=65 \mathrm{meV}, \Gamma_{x}=$ $=\Gamma_{y}=\Gamma=3.4 \mathrm{meV}$, and $J_{z} \gtrsim(3-5) \mu \mathrm{eV}$ [11]. To compare our results with the theoretical studies of the 2 D

CH model in Ref. [5], we consider also large anisotropic compass-model interactions, $\Gamma_{x}>\Gamma_{y}>J$.

We adopt a two-sublattice (A, B) representation for the AF LRO below the Néel temperature. Then the Hamiltonian (1) with $\Gamma_{x}=\Gamma_{y}>0$ is an easy-plane AF, where the direction of the AF order parameter (OP) - the magnetization of one sublattice in the (x, y) plane - is degenerate. To lift the degeneracy, we assume anisotropic compass-model interactions $\Gamma_{x}>\Gamma_{y}>0$. In this case the model (1) describes an easy-axis AF with the OP $\left\langle S_{i \subset A}^{x}\right\rangle=-\left\langle S_{i \subset B}^{x}\right\rangle$ fixed along the x axis. We can consider also the limiting case, $\Gamma_{x}=\Gamma_{y}$. The AF LRO can be described by the AF wave vector $\mathbf{Q}=(\pi / a, \pi / a, \pi / c)$.

It is convenient to write the Hamiltonian (1) in terms of the circular components $S_{i}^{ \pm}=S_{i}^{y} \pm i S_{i}^{z}$ in the form

$$
\begin{align*}
H=\frac{1}{2} \sum_{\langle i, j\rangle} & \left\{J_{i j}^{x} S_{i}^{x} S_{j}^{x}+J_{i j}^{y} \frac{1}{2}\left[S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right]+\right. \\
& \left.+\frac{1}{4} \Gamma_{i j}^{y}\left[S_{i}^{+} S_{j}^{+}+S_{i}^{-} S_{j}^{-}\right]\right\} \tag{2}
\end{align*}
$$

where $J_{i j}^{x}=J_{i j}+\Gamma_{i j}^{x}, J_{i j}^{y}=J_{i j}+(1 / 2) \Gamma_{i j}^{y}$.
To calculate the spin-wave spectrum of transverse spin excitations, we introduce the retarded two-time commutator GFs [12]:

$$
\begin{gather*}
G_{n m}^{\alpha, \beta}\left(t-t^{\prime}\right)=-i \theta\left(t-t^{\prime}\right)\left\langle\left[S_{n}^{\alpha}(t), S_{m}^{\beta}\left(t^{\prime}\right)\right]\right\rangle= \\
\quad=\int_{-\infty}^{+\infty} \frac{d \omega}{2 \pi} e^{-i \omega\left(t-t^{\prime}\right)}\left\langle\left\langle S_{n}^{\alpha} \mid S_{m}^{\beta}\right\rangle\right\rangle_{\omega} \tag{3}
\end{gather*}
$$

where $\alpha, \beta=(\pm)$, and $\langle\ldots\rangle$ is the statistical average. The indexes n, m run over $N / 2$ lattice sites $i(j)$ in the sublattice $A(B)$.

There are four types of the GFs due to the twosublattice representation for normal and anomalous GFs which can be written as 4×4 matrix GF

$$
\hat{G}(\omega)=\left\langle\left\langle\left.\left(\begin{array}{c}
S_{i}^{+} \tag{4}\\
S_{i}^{-} \\
S_{j}^{-} \\
S_{j}^{+}
\end{array}\right) \right\rvert\,\left(S_{i^{\prime}}^{-} S_{i^{\prime}}^{+} S_{j^{\prime}}^{+} S_{j^{\prime}}^{-}\right)\right\rangle\right\rangle_{\omega}
$$

Here the lattice sites i, i^{\prime} refer to the sublattice A while the lattice sites j, j^{\prime} refer to the sublattice B.

Using equations of motion for spin operators, $i(d / d t) S_{i}^{ \pm}(t)=\left[S_{i}^{ \pm}, H\right]=\mp \sum_{n} J_{i n}^{x} S_{i}^{ \pm} S_{n}^{x} \pm$ $\pm \sum_{n}\left[J_{i n}^{y} S_{i}^{x} S_{n}^{ \pm}+(1 / 2) \Gamma_{i n}^{y} S_{i}^{x} S_{n}^{\mp}\right]$, we obtain a system of equations for the matrix components of the GF (4). In particular,

$$
\begin{gathered}
\omega\left\langle\left\langle S_{i}^{+} \mid S_{i^{\prime}}^{-}\right\rangle\right\rangle_{\omega}=2\left\langle S_{i}^{x}\right\rangle \delta_{i, i^{\prime}}-\sum_{n} J_{i n}^{x}\left\langle\left\langle S_{i}^{+} S_{n}^{x} \mid S_{i^{\prime}}^{-}\right\rangle\right\rangle_{\omega}+ \\
+\sum_{n}\left[J_{i n}^{y}\left\langle\left\langle S_{i}^{x} S_{n}^{+} \mid S_{i^{\prime}}^{-}\right\rangle\right\rangle_{\omega}+(1 / 2) \Gamma_{i n}^{y}\left\langle\left\langle S_{i}^{x} S_{n}^{-} \mid S_{i^{\prime}}^{-}\right\rangle\right\rangle_{\omega}\right],
\end{gathered}
$$

$$
\begin{gathered}
\omega\left\langle\left\langle S_{j}^{-} \mid S_{j^{\prime}}^{+}\right\rangle\right\rangle_{\omega}=-2\left\langle S_{j}^{x}\right\rangle \delta_{j, j^{\prime}}+\sum_{m} J_{j m}^{x}\left\langle\left\langle S_{j}^{-} S_{m}^{x} \mid S_{j^{\prime}}^{+}\right\rangle\right\rangle_{\omega}- \\
\quad-\sum_{m}\left[J_{j m}^{y}\left\langle\left\langle S_{j}^{x} S_{m}^{-} \mid S_{j^{\prime}}^{+}\right\rangle\right\rangle_{\omega}+(1 / 2) \Gamma_{j m}^{y}\left\langle\left\langle S_{j}^{x} S_{m}^{+} \mid S_{j^{\prime}}^{+}\right\rangle\right\rangle_{\omega}\right]
\end{gathered}
$$

In the RPA [10] for all GFs the following approximation is used for the lattice sites $n \neq i, m \neq j$, as e.g.,

$$
\begin{gather*}
\left\langle\left\langle S_{i}^{x} S_{n}^{\alpha} \mid S_{i^{\prime}}^{\beta}\right\rangle\right\rangle_{\omega}=\left\langle S_{i}^{x}\right\rangle\left\langle\left\langle S_{n}^{\alpha} \mid S_{i^{\prime}}^{\beta}\right\rangle\right\rangle_{\omega}=\sigma\left\langle\left\langle S_{n}^{\alpha} \mid S_{i^{\prime}}^{\beta}\right\rangle\right\rangle_{\omega} \\
\left\langle\left\langle S_{n}^{x} S_{i}^{\alpha} \mid S_{i^{\prime}}^{\beta}\right\rangle\right\rangle_{\omega}=\left\langle S_{n}^{x}\right\rangle\left\langle\left\langle S_{i}^{\alpha} \mid S_{i^{\prime}}^{\beta}\right\rangle\right\rangle_{\omega}=-\sigma\left\langle\left\langle S_{i}^{\alpha} \mid S_{i^{\prime}}^{\beta}\right\rangle\right\rangle_{\omega} \tag{5}
\end{gather*}
$$

where $\left\langle S_{i}^{x}\right\rangle=\sigma$ for $i \in A$ while $\left\langle S_{n}^{x}\right\rangle=-\sigma$ for $n \in B$. A similar approximation is used for the B sublattice, where $\left\langle S_{j}^{x}\right\rangle=-\sigma$ for $j \in B$ while $\left\langle S_{m}^{x}\right\rangle=\sigma$ for $m \in A$. The RPA results in a closed system of equations for the components of the matrix GF (4).

To solve the obtained system of equations we introduce the Fourier representation of spin operators for $N / 2$ lattice sites in two sublattices, $\quad S_{i}^{ \pm}=\sqrt{2 / N} \sum_{\mathbf{q}} S_{\mathbf{q}}^{ \pm} \exp \left(\pm i \mathbf{q r}_{i}\right) \quad$ and $S_{j}^{ \pm}=\sqrt{2 / N} \sum_{\mathbf{q}^{\prime}} S_{\mathbf{q}^{\prime}}^{ \pm} \exp \left(\pm i \mathbf{q}^{\prime} \mathbf{r}_{j}\right)$, where \mathbf{q} and \mathbf{q}^{\prime} run over $N / 2$ wave vectors in the reduced BZ of each sublattice. Using this transformation the equation for the Fourier representation of the matrix GF (4) can be written in the from

$$
\begin{equation*}
\hat{G}(\mathbf{q}, \omega)=\{\omega \hat{I}-\hat{V}(\mathbf{q})\}^{-1} \times 2 \sigma \hat{I}_{1} \tag{6}
\end{equation*}
$$

where \hat{I} is the unity matrix, \hat{I}_{1} is a diagonal matrix with the elements $d_{11}=d_{33}=1$ and $d_{22}=d_{44}=-1$, and the interaction matrix is given by

$$
\hat{V}(\mathbf{q})=\left(\begin{array}{cccc}
A & 0 & B(\mathbf{q}) & C(\mathbf{q}) \tag{7}\\
0 & -A & -C(\mathbf{q}) & -B(\mathbf{q}) \\
B(\mathbf{q}) & C(\mathbf{q}) & A & 0 \\
-C(\mathbf{q}) & -B(\mathbf{q}) & 0 & -A
\end{array}\right)
$$

Here the interaction parameters are:

$$
\begin{gather*}
A=\sigma J^{x}(0)=\sigma\left[J(0)+2 \Gamma_{x}\right] \\
J(\mathbf{q})=2 J\left(\cos q_{x}+\cos q_{y}\right)+2 J_{z} \cos q_{z} \\
B(\mathbf{q})=\sigma \Gamma_{y} \cos q_{y}, C(\mathbf{q})=\sigma\left[J(\mathbf{q})+\Gamma_{y} \cos q_{y}\right] \tag{8}
\end{gather*}
$$

The spectrum of spin waves is determined from the equation

$$
\begin{equation*}
\operatorname{Det}|\omega \hat{I}-\hat{V}(\mathbf{q})|=0 \tag{9}
\end{equation*}
$$

After some algebra we obtain the biquadratic equation for the frequency ω of spin-wave excitations:

$$
\begin{gathered}
\omega^{4}-2 \omega^{2}\left[A^{2}+B^{2}(\mathbf{q})-C^{2}(\mathbf{q})\right]+\left[B^{2}(\mathbf{q})-C^{2}(\mathbf{q})\right]^{2}- \\
-2 A^{2}\left[C^{2}(\mathbf{q})+B^{2}(\mathbf{q})\right]+A^{4}=0
\end{gathered}
$$

The solution of this equation reads

$$
\begin{gather*}
\omega_{\nu}(\mathbf{q})= \pm\left\{A^{2}+B^{2}(\mathbf{q})-C^{2}(\mathbf{q})+2 \nu A B(\mathbf{q})\right\}^{1 / 2} \equiv \\
\equiv \pm \sigma \varepsilon_{\nu}(\mathbf{q}), \tag{10}
\end{gather*}
$$

where $\nu= \pm 1$. The energy of excitations for "acoustic" $\varepsilon_{-}(\mathbf{q})$ and "optic" $\varepsilon_{+}(\mathbf{q})$ modes are

$$
\begin{align*}
& \varepsilon_{-}(\mathbf{q})=\left\{J^{2}(0)-J^{2}(\mathbf{q})+4 \Gamma_{x}\left[J(0)+\Gamma_{x}\right]-\right. \\
&-\left.2 \Gamma_{y}\left[J(0)+J(\mathbf{q})+2 \Gamma_{x}\right] \cos q_{y}\right\}^{1 / 2}, \tag{11}\\
& \varepsilon_{+}(\mathbf{q})=\left\{J^{2}(0)-J^{2}(\mathbf{q})+4 \Gamma_{x}\left[J(0)+\Gamma_{x}\right]+\right. \\
&+\left.2 \Gamma_{y}\left[J(0)-J(\mathbf{q})+2 \Gamma_{x}\right] \cos q_{y}\right\}^{1 / 2} . \tag{12}
\end{align*}
$$

These two branches are coupled by the relation $\varepsilon_{-}(\mathbf{q}+\mathbf{Q})=\varepsilon_{+}(\mathbf{q})$ for the AF wave vector \mathbf{Q}.

For the symmetric compass-model interaction, $\Gamma_{x}=$ $=\Gamma_{y}=\Gamma$, for $\mathbf{q}=0$ we have the gapless acoustic mode while the optic mode has a gap:

$$
\begin{equation*}
\varepsilon_{-}(0)=0, \quad \varepsilon_{+}(0)=2 \sqrt{\Gamma J(0)+2 \Gamma^{2}}>0 . \tag{13}
\end{equation*}
$$

For the wave vector $\mathbf{q}=\mathbf{Q}$ we have the opposite results: $\varepsilon_{-}(\mathbf{Q})=\varepsilon_{+}(0)>0, \quad \varepsilon_{+}(\mathbf{Q})=\varepsilon_{-}(0)=0$. In the anisotropic case $\Gamma_{x}>\Gamma_{y}$ the spectrum of excitations has gaps both at $\mathbf{q}=0$ and \mathbf{Q} :

$$
\begin{equation*}
\varepsilon_{-}(0)=\varepsilon_{+}(\mathbf{Q})=2 \sqrt{\left(\Gamma_{x}-\Gamma_{y}\right)\left[J(0)+\Gamma_{x}\right]} . \tag{14}
\end{equation*}
$$

For a conventional AF Heisenberg model with $\Gamma_{x}=$ $=\Gamma_{y}=0$ we have only one branch with the dispersion $\varepsilon_{-}(\mathbf{q})=\varepsilon_{+}(\mathbf{q})=\sqrt{J^{2}(0)-J^{2}(\mathbf{q})}$ which is gapless both at $\mathbf{q}=0$ and \mathbf{Q}.

A similar equation of motion method for the matrix GF (4) can be employed in the linear spin-wave theory (LSWT) using the transformation $S_{i}^{+}=\sqrt{2 S} a_{i}$, $S_{i}^{-}=\sqrt{2 S} a_{i}^{\dagger}, S_{i}^{x}=S-a_{i}^{\dagger} a_{i}$ for the sublattice A and the similar transformation for the sublattice B $\left(a_{i} \rightarrow b_{i}^{\dagger}\right)$. Then keeping only linear terms in the boselike operators (a_{i}, a_{i}^{\dagger}) and (b_{i}, b_{i}^{\dagger}) we obtain Eqs. (10)-
(12) for the spin-wave spectrum in LSWT with the sublattice magnetization σ substituted by spin S. The same spectrum in LSWT was obtained in Refs. [5, 6]. Note that in the RPA the energy of spin excitations $\omega_{ \pm}(\mathbf{q})$, Eq. (10), is reduced in comparison with the LSWT since $\sigma<S$ even at zero temperature due to zero-point fluctuations in the AF state. The spectrum (10) for the symmetric compass model, $\Gamma_{x}=\Gamma_{y}$, is similar to the spectrum of the anisotropic AF Heisenberg model considered in Ref. [13].

In Fig. 1 the spectrum of spin waves $\omega_{ \pm}(\mathbf{q})$ in the plane in RPA for the parameters $J=65 \mathrm{meV}$, $\Gamma=3.4 \mathrm{meV}$ found for $\mathrm{Ba}_{2} \mathrm{IrO}_{4}$ [11] is shown at

Fig. 1. Spectrum of spin-wave excitations $\omega_{-}(\mathbf{q})$ (bold line) and $\omega_{+}(\mathbf{q})$ (dashed line) along the symmetry directions in the BZ for the symmetric compass model with $\Gamma_{x}=\Gamma_{y}=\Gamma=0.052 J$ and $J_{z}=0$
$T=0$. The spectrum $\omega_{-}(\mathbf{q})$ shows a gap at the wave vector \mathbf{Q} given by $\omega_{-}(\mathbf{Q})=2 \sigma \sqrt{\Gamma J(0)+2 \Gamma^{2}} \approx$ $\approx 1.48 J \sqrt{\Gamma / J} \approx 22 \mathrm{meV}$ for $\sigma=0.37$. This value is comparable with the maximum energy of excitations $\omega_{-}^{\max }(\mathbf{Q} / 2)=4 \sigma J \sqrt{1+\Gamma / J} \approx 1.5 J$ that gives $\omega_{-}(\mathbf{Q}) / \omega_{-}^{\max }(\mathbf{Q} / 2) \approx 0.22$. We can suggest that the spin-wave spectrum in $\mathrm{Ba}_{2} \mathrm{IrO}_{4}$ should be similar to that one measured by RIXS in $\mathrm{Sr}_{2} \mathrm{IrO}_{4}$ [9]. The latter was fitted by a one-branch phenomenological $J-J^{\prime}-J^{\prime \prime}$ model with $J=60 \mathrm{meV}, J^{\prime}=-20 \mathrm{meV}$, and $J^{\prime \prime}=15 \mathrm{meV}$. The spectrum does not reveal a gap in the acoustic branch $\omega_{-}(\mathbf{q})$ at \mathbf{Q} as for $\mathrm{Ba}_{2} \mathrm{IrO}_{4}$. However, since the intensity of scattering on magnons is proportional to $1 / \omega(\mathbf{q})$, strong scattering on the gapless branch $\omega_{+}(\mathbf{q}) \rightarrow 0$ for $\mathbf{q} \rightarrow \mathbf{Q}$ completely suppresses scattering on the gapped $\omega_{-}(\mathbf{q})$ branch. To distinguish scattering on the two branches, high-resolution studies are necessary. We have found the energy of excitations at $\mathbf{q}_{1}=(\pi / 2, \pi / 2), \omega_{-}\left(\mathbf{q}_{1}\right)=\omega_{+}\left(\mathbf{q}_{1}\right)$, to be nearly equal to $\omega_{ \pm}(\mathbf{q}=\pi, 0)$ (up to $\left.\pm \Gamma / J\right)$, while in the RIXS experiment $\omega\left(\mathbf{q}_{1}\right) \approx(1 / 2) \omega(\mathbf{q}=\pi, 0)$ was found. Possibly, this difference can be explained by magnon interaction with spin-orbital excitations observed in [9] which are not taken into account in the model (1).

Fig. 2 shows the spin-wave dispersion for large anisotropic interaction, $\Gamma_{x}=8.9 \mathrm{~J}, \quad \Gamma_{y}=4.5 \mathrm{~J}$ used in Ref. [5] in numerical calculations with Lanczos exact diagonalization. Our RPA calculations give a similar formula for the spectrum as in LSWT except for the prefactor $\sigma=0.44$ instead of $S=1 / 2$ in LSWT. The dispersion curves are in good agreement with numerical ones shown by circles which were multiplied by the factor $10 / 4$, since in Ref. [5], instead of spin $1 / 2$ oper-

Fig. 2. Spectrum of spin-wave excitations ω_{-}(q) (bold line) and $\omega_{+}(\mathbf{q})$ (dashed line) along the symmetry directions in the BZ for the anisotropic compass model with $\Gamma_{x}=8.9 \mathrm{~J}$, $\Gamma_{y}=4.5 J, J_{z}=0$. Circles are numerical results from Ref. [5]
ators, the Pauli matrices are used so that the exchange integral I corresponds to our $(1 / 4) J$ in Eq. (1), and in Fig. 4 of Ref. [5] the energy unit is $J_{c}=10 I$. The spectrum reveals a large gap at all wave vectors caused by the large value of Γ_{x} and a noticeable dispersion only along the $\Gamma(0,0) \rightarrow Y(0, \pi)$ direction due to a large, in comparison with J, interaction $\Gamma_{y}=4.5 \mathrm{~J}$.

To calculate the sublattice magnetization $\sigma=\left\langle S_{i}^{x}\right\rangle$ in RPA, we use the kinematic relation $S_{i}^{x}=1 / 2-S_{i}^{-} S_{i}^{+}$ for spin $S=1 / 2$ which results in the self-consistent equation

$$
\begin{equation*}
\sigma=\frac{1}{2}-\frac{1}{N / 2} \sum_{\mathbf{q}}\left\langle S_{\mathbf{q}}^{-} S_{\mathbf{q}}^{+}\right\rangle \tag{15}
\end{equation*}
$$

The spin correlation function $\left\langle S_{\mathbf{q}}^{-} S_{\mathbf{q}}^{+}\right\rangle$can be calculated from the GF $\left\langle\left\langle S_{\mathbf{q}}^{+} \mid S_{\mathbf{q}}^{-}\right\rangle\right\rangle_{\omega}$ which follows from the GF (6):

$$
\begin{gather*}
\left\langle\left\langle S_{\mathbf{q}}^{+} \mid S_{\mathbf{q}}^{-}\right\rangle\right\rangle_{\omega}=2 \sigma \frac{a_{\mathbf{q}}(\omega)}{\left[\omega^{2}-\omega_{-}^{2}(\mathbf{q})\right]\left[\omega^{2}-\omega_{+}^{2}(\mathbf{q})\right]}, \tag{16}\\
a_{\mathbf{q}}(\omega)=\omega^{3}+A \omega^{2}-\left[A^{2}+B^{2}(\mathbf{q})-C^{2}(\mathbf{q})\right] \omega- \\
-A^{3}+A\left[B^{2}(\mathbf{q})+C^{2}(\mathbf{q})\right]
\end{gather*}
$$

Using the spectral representation for GFs, for the correlation function we obtain

$$
\begin{equation*}
\left\langle S_{\mathbf{q}}^{-} S_{\mathbf{q}}^{+}\right\rangle=2 \sigma \sum_{\mu, \nu= \pm 1} I_{\mu \nu}(\mathbf{q}) N\left[\mu \omega_{\nu}(\mathbf{q})\right] \tag{17}
\end{equation*}
$$

where $N(\omega)=[\exp (\omega / T)-1]^{-1}$, and the contribution from the four poles of the GF (16) is given by

$$
\begin{equation*}
I_{\mu \nu}(\mathbf{q})=\frac{a_{\mathbf{q}}\left[\mu \omega_{\nu}(\mathbf{q})\right]}{8 \mu \nu \omega_{\nu}(\mathbf{q}) A B(\mathbf{q})} \tag{18}
\end{equation*}
$$

Note that $I_{\mu \nu}(\mathbf{q})$ does not depend on σ.
Using relation (17) we perform the self-consistent solution of Eq. (15) for the magnetization σ. Fig. 3 shows

Fig. 3. Sublattice magnetization $\sigma=\left\langle S_{i}^{x}\right\rangle$ for the parameters $J_{z}=5 \cdot 10^{-5} J, \Gamma_{x}=0.052 J$ for $\Gamma_{y} / \Gamma_{x}=1$ (solid line), 0.95 (dashed line), 0.5 (dotted), and for $\Gamma_{y} / \Gamma_{x} \leqslant 0.1$ (dash-dotted)
the sublattice magnetization for $J_{z}=5 \times 10^{-5} J$, $\Gamma_{x}=0.052 J$ for various Γ_{y} / Γ_{x}. For the symmetric compass model, $\Gamma_{x}=\Gamma_{y}=0.052 J$, the Néel temperature $T_{\mathrm{N}}=0.365 \mathrm{~J}=275 \mathrm{~K}$ is close to $T_{\mathrm{N}}=240 \mathrm{~K}$ observed in experiment for $\mathrm{Ba}_{2} \mathrm{IrO}_{4}$. We stress that the anisotropy of the compass-model interaction, $\Gamma_{y} / \Gamma_{x}<1$, enhances T_{N}.

To study the T_{N} dependence on the parameters of the model, we consider Eq. (15) in the limit $\sigma \rightarrow 0$. In this limit $N\left(\omega_{\nu}\right) \approx T / \sigma \varepsilon_{\nu}$, and for the Néel temperature we have the equation:

$$
\begin{equation*}
\frac{1}{2}=\frac{1}{N / 2} \sum_{\mathbf{q}} \sum_{\mu, \nu= \pm 1} I_{\mu \nu}(\mathbf{q}) \frac{2 T_{\mathrm{N}}}{\mu \varepsilon_{\nu}(\mathbf{q})} \tag{19}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
T_{\mathrm{N}}=\frac{1}{4 C}, \quad C=\frac{1}{N / 2} \sum_{\mathbf{q}} \sum_{\mu, \nu} \frac{I_{\mu \nu}(\mathbf{q})}{\mu \varepsilon_{\nu}(\mathbf{q})} \tag{20}
\end{equation*}
$$

Let us study in which cases the integral over \mathbf{q} in (20) has a finite value that results in a finite T_{N}.

At first we consider the symmetric compass model, $\Gamma_{x}=\Gamma_{y}=\Gamma$. In this case $\varepsilon_{-}(\mathbf{q})=0$ at $\mathbf{q}=0$ and $\varepsilon_{+}(\mathbf{q})=0$ at $\mathbf{q}=\mathbf{Q}$. Since these two branches are symmetric, we can consider only the divergency of the integral in (20) at $\mathbf{q}=0$ for $\varepsilon_{-}(\mathbf{q})$ given around $\mathbf{q}=0$ by

$$
\begin{align*}
& \varepsilon_{-}^{2}(\mathbf{q})=2[J(0)+\Gamma]\left(J q_{x}^{2}+\right. \\
&+\left.\left\{J+\Gamma^{2} /[J(0)+\Gamma]\right\} q_{y}^{2}+J_{z} q_{z}^{2}\right) . \tag{21}
\end{align*}
$$

The integral in (20) diverges as $\int d^{3} \mathbf{q} / \varepsilon_{-}^{2}(\mathbf{q})$ if any coefficient before q_{x}, q_{y} or q_{z} in (21) is zero. In particular, for nonzero $J(0)$ there is no LRO at finite T for $J_{z}=0$.

In the limiting case $\Gamma \rightarrow 0$ we have $\lim I_{\mu \nu}(\mathbf{q})=$ $=\left(A+\mu \omega_{\mathbf{q}}\right) /\left(4 \mu \omega_{\mathbf{q}}\right)$ with $\omega_{\mathbf{q}}=\sqrt{A^{2}-C^{2}(\mathbf{q})}$. From Eq. (20) we get the conventional formula for T_{N} of the AF Heisenberg model (c.f. Ref. [14]):

$$
\begin{equation*}
T_{\mathrm{N}}(\Gamma=0)=\left[\frac{8 J(0)}{N} \sum_{\mathbf{q}} \frac{1}{J(0)^{2}-J^{2}(\mathbf{q})}\right]^{-1} \tag{22}
\end{equation*}
$$

Thus, for a symmetric 2D compass model we have no LRO at finite T. To obtain LRO, we must have finite values of both J and J_{z}. The Néel temperature T_{N} as a function of the interplane coupling J_{z} is shown in Fig. 4 for the interaction $\Gamma_{x}=\Gamma_{y}=0.052 J$ and for

Fig. 4. Néel temperature T_{N} as a function of J_{z} with $\Gamma_{x}=\Gamma_{y}=0.052 J$ (solid line) and $\Gamma_{x}=\Gamma_{y}=0($ dashed line)
$\Gamma_{x}=\Gamma_{y}=0$. We can conclude that the compass-model interaction enhances the Néel temperature and, in particular, the anisotropy of the compass-model interaction results in a further increase of T_{N} as shown in Fig. 3. In the anisotropic case $\Gamma_{x}>\Gamma_{y}$ the spectrum of excitations has a gap at $q=0$, Eq. (14), and therefore neither branch of this spectrum ever reaches zero, so that we have a finite T_{N} even for $J_{z}=0$. Fig. 5 demonstrates the dependence of T_{N} on Γ_{x} for $J_{z}=0, \Gamma_{y}=0.1 \Gamma_{x}$, and $\Gamma_{y}=0.9 \Gamma_{x}$. For $\Gamma_{x} \rightarrow 0$ the Néel temperature goes to zero as shown in the inset.

To summarize, we have studied the spin-wave spectrum for the Heisenberg model with anisotropic compass-model interaction within the RPA. The spectrum has gaps at $\mathbf{q}=0$ or at the AF wave vector \mathbf{Q} for

Fig. 5. Néel temperature T_{N} as a function of Γ_{x} for $J_{z}=0$, $\Gamma_{y}=0.1 \Gamma_{x}$ (solid line) and $\Gamma_{y}=0.9 \Gamma_{x}$ (dashed line). In the inset the $1 / T_{\mathrm{N}}$ dependence is shown in the logarithmic scale for small Γ_{x}
nonzero compass-model interactions. The calculation of the Néel temperature T_{N} shows that for the symmetric compass-model interaction, $\Gamma_{x}=\Gamma_{y}$, and a nonzero exchange interaction J, the AF LRO at finite T can exist only for a finite coupling J_{z} between the planes. For the anisotropic compass-model interaction, $\Gamma_{x}>\Gamma_{y}$, and a finite exchange interaction J in the plane, the AF LRO with finite Néel temperature emerges even in the 2D case as observed in finite cluster calculations [5, 6]. In any case, T_{N} is enhanced by the compass-model interaction.

The authors would like to thank G. Jackeli, A.M. Oleś, J. Richter, Yu.G. Rudoy, and V. Yushankhai for valuable discussions. A financial support by the Heisenberg-Landau Program of JINR is acknowledged.

1. K. Kugel and D. Khomskii, Usp. Fiz. Nauk 136, 621 (1982) [Sov. Phys. Usp. 25, 231 (1982)].
2. R. Oru's, A. C. Doherty, and G. Vidal, Phys. Rev. Lett. 102, 077203 (2009).
3. S. Wenzel and W. Janke, Phys. Rev. B 78, 064402 (2008).
4. S. Wenzel, W. Janke, and A. M. Läuchli, Phys. Rev. E 78, 066702 (2010).
5. F. Trousselet, A. M. Oleś, and P. Horsch, Europhys. Lett. 91, 40005 (2010).
6. F. Trousselet, A. M. Oleś, and P. Horsch, Phys. Rev. B 86, 134412 (2012).
7. G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009).
8. S. Boseggia, R. Springell, H. C. Walker, H. M. Rønnow, Ch. Rüegg, H. Okabe, M. Isobe, R.S. Perry,
S.P. Collins, and D.F. McMorrow, Phys. Rev. Lett. 110, 117207 (2013).
9. J. Kim, D. Casa, M. H. Upton, T. Gog, Y.-J. Kim, J. F. Mitchell, M. van Veenendaal, M. Daghofer, J. van den Brink, G. Khaliullin, and B. J. Kim, Phys. Rev. Lett. 108, 177003 (2012).
10. S. V. Tyablikov, Methods in the Quantum Theory of Magnetism, Plenum, N.Y. (1967) [2-nd Edition, Nauka, M. (1975)].
11. V. M. Katukuri, V. Yushankhai, L. Siurakshina, J. van den Brink, L. Hozoi, and I. Rousochatzakis, Phys. Rev. X 4, 021051 (2014).
12. D.N. Zubarev, Usp. Phys. Nauk, 71, 71 (1960) [Sov. Phys. Usp. 3, 320 (1960)].
13. V.I. Lymar' and Yu. G. Rudoy, Theor. Math. Phys. 21, 86 (1974).
14. A. A. Vladimirov, D. Ihle, and N. M. Plakida, Theor. Math. Phys. 177, 1540 (2013).

[^0]: ${ }^{1)}$ e-mail: plakida@theor.jinr.ru

