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The spin-wave excitation spectrum, the magnetization, and the Néel temperature for the quasi-two-

dimensional spin-1/2 antiferromagnetic Heisenberg model with compass-model interaction in the plane pro-

posed for iridates are calculated in the random phase approximation. The spin-wave spectrum agrees well

with data of Lanczos diagonalization. We find that the Néel temperature is enhanced by the compass-model

interaction and is close to the experimental value for Ba2IrO4.
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Spin-orbital physics in transition-metal oxides has

been extensively studied in recent years. A number of

theoretical models was proposed to describe a compli-

cated nature of phase transitions induced by competing

spin and orbital interactions as originally was considered

in Ref. [1]. Whereas the isotropic spin interaction can be

treated within the conventional Heisenberg model, to

study the orientation-dependent orbital interaction the

compass model is commonly used. The latter reveals a

large degeneracy of ground states resulting in a compli-

cated phase diagram. In particular, quantum and ther-

modynamic phase transitions in the two-dimensional

(2D) compass model were studied in Refs. [2–4], where

a first-order transition was found for the symmetric

compass model. A generalized 2D Compass–Heisenberg

(CH) model was introduced in Ref. [5], where an im-

portant role of the spin Heisenberg interaction in lifting

the high degeneracy of the ground state of the com-

pass model was stressed. In Ref. [6] a phase diagram of

the CH model and excitations within Lanczos exact di-

agonalization for finite clusters on a square lattice were

considered in detail. In particular, spin-wave excitations

and column-flip excitations in nanoclusters characteris-

tic to the compass model were analyzed.

A strong relativistic spin-orbital coupling reveals a

compass-model type interaction in 5d transition met-

als. In particular, it was shown in Ref. [7], that a strong

spin-orbit coupling in such compounds as Sr2IrO4 and

Ba2IrO4 results in an effective antiferromagnetic (AF)

Heisenberg model for the pseudospins 1/2 with the

compass-model anisotropy. The model can be used to

1)e-mail: plakida@theor.jinr.ru

explain the AF long-range order (LRO) below the Néel

temperature TN = 230K in Sr2IrO4 and TN = 240K in

Ba2IrO4 (see, e.g., [8]). The spin-wave spectrum mea-

sured by magnetic resonance inelastic x-ray scattering

(RIXS) in Sr2IrO4 shows a dispersion similar to that

one in the undoped cuprate La2CuO4 [9].

In the present paper we calculate the spin-wave ex-

citation spectrum and magnetization for a layered AF

Heisenberg model with anisotropic compass-model in-

teraction in the plane. To take into account the finite-

temperature renormalization of the spectrum and to cal-

culate the Néel temperature TN, we employ the equa-

tion of motion method for the Green functions (GFs)

for spin S = 1/2 using the random phase approximation

(RPA) [10]. The results are compared with experimen-

tal data for iridates and theoretical studies of the 2D

CH model in Ref. [5].

We consider the layered Heisenberg AF with the

compass-model interaction in the plane. The Hamilto-

nian of the model can be written as

H =
1

2

∑

i,j

{

JijSiSj + Γx
ijS

x
i S

x
j + Γy

ijS
y
i S

y
j

}

. (1)

Here Jij = J (δrj ,ri±ax
+ δrj ,ri±ay

) + Jz δrj ,ri±c, where

J is the exchange interaction between the nearest neigh-

bors in the plane with the lattice constants ax = ay = a,

and Jz is the coupling between the planes with the

distance c. The compass model interaction is given by

Γx
ij = Γx δrj ,ri±ax

, Γy
ij = Γyδrj ,ri±ay

. The ab initio

many-body quantum chemistry calculations give the fol-

lowing parameters for Ba2IrO4: J = 65meV, Γx =

= Γy = Γ = 3.4meV, and Jz & (3−5)µeV [11]. To com-

pare our results with the theoretical studies of the 2D
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CH model in Ref. [5], we consider also large anisotropic

compass-model interactions, Γx > Γy > J .

We adopt a two-sublattice (A,B) representation for

the AF LRO below the Néel temperature. Then the

Hamiltonian (1) with Γx = Γy > 0 is an easy-plane

AF, where the direction of the AF order parameter

(OP) – the magnetization of one sublattice in the (x, y)

plane – is degenerate. To lift the degeneracy, we assume

anisotropic compass-model interactions Γx > Γy > 0 .

In this case the model (1) describes an easy-axis AF

with the OP 〈Sx
i⊂A〉 = −〈Sx

i⊂B〉 fixed along the x

axis. We can consider also the limiting case, Γx = Γy .

The AF LRO can be described by the AF wave vector

Q = (π/a, π/a, π/c).

It is convenient to write the Hamiltonian (1) in terms

of the circular components S±
i = Sy

i ± iSz
i in the form

H =
1

2

∑

〈i,j〉

{

Jx
ij S

x
i S

x
j + Jy

ij

1

2

[

S+
i S−

j + S−
i S+

j

]

+

+
1

4
Γy
ij

[

S+
i S+

j + S−
i S−

j

]

}

, (2)

where Jx
ij = Jij + Γx

ij , J
y
ij = Jij + (1/2)Γy

ij .

To calculate the spin-wave spectrum of transverse

spin excitations, we introduce the retarded two-time

commutator GFs [12]:

Gα,β
nm(t− t′) = −iθ(t− t′)〈[Sα

n (t), S
β
m(t′)]〉 =

=

∫ +∞

−∞

dω

2π
e−iω(t−t′)〈〈Sα

n |Sβ
m〉〉ω , (3)

where α, β = (±), and 〈. . .〉 is the statistical average.

The indexes n,m run over N/2 lattice sites i (j) in the

sublattice A (B).

There are four types of the GFs due to the two-

sublattice representation for normal and anomalous GFs

which can be written as 4× 4 matrix GF

Ĝ(ω) =

〈〈













S+
i

S−
i

S−
j

S+
j













|
(

S−
i′ S

+
i′ S

+
j′ S

−
j′

)

〉〉

ω

. (4)

Here the lattice sites i, i′ refer to the sublattice A while

the lattice sites j, j′ refer to the sublattice B.

Using equations of motion for spin operators,

i(d/dt)S±
i (t) = [S±

i , H ] = ∓∑

n Jx
inS

±
i Sx

n ±
± ∑

n [J
y
in Sx

i S
±
n + (1/2)Γy

in S
x
i S

∓
n ] , we obtain a

system of equations for the matrix components of the

GF (4). In particular,

ω〈〈S+
i |S−

i′ 〉〉ω = 2〈Sx
i 〉 δi,i′ −

∑

n

Jx
in〈〈S+

i Sx
n|S−

i′ 〉〉ω +

+
∑

n

[ Jy
in 〈〈Sx

i S
+
n |S−

i′ 〉〉ω + (1/2)Γy
in〈〈Sx

i S
−
n |S−

i′ 〉〉ω ],

ω〈〈S−
j |S+

j′ 〉〉ω = −2〈Sx
j 〉 δj,j′ +

∑

m

Jx
jm〈〈S−

j Sx
m|S+

j′ 〉〉ω −

−
∑

m

[ Jy
jm 〈〈Sx

j S
−
m|S+

j′ 〉〉ω + (1/2)Γy
jm〈〈Sx

j S
+
m|S+

j′ 〉〉ω ].

In the RPA [10] for all GFs the following approximation

is used for the lattice sites n 6= i, m 6= j, as e.g.,

〈〈Sx
i S

α
n |Sβ

i′〉〉ω = 〈Sx
i 〉 〈〈Sα

n |Sβ
i′〉〉ω = σ 〈〈Sα

n |Sβ
i′〉〉ω ,

〈〈Sx
nS

α
i |Sβ

i′〉〉ω = 〈Sx
n〉 〈〈Sα

i |Sβ
i′〉〉ω = −σ 〈〈Sα

i |Sβ
i′ 〉〉ω, (5)

where 〈Sx
i 〉 = σ for i ∈ A while 〈Sx

n〉 = −σ for n ∈ B.

A similar approximation is used for the B sublattice,

where 〈Sx
j 〉 = −σ for j ∈ B while 〈Sx

m〉 = σ for m ∈ A.

The RPA results in a closed system of equations for the

components of the matrix GF (4).

To solve the obtained system of equations

we introduce the Fourier representation of spin

operators for N/2 lattice sites in two sublat-

tices, S±
i =

√

2/N
∑

q
S±
q

exp(±iqri) and

S±
j =

√

2/N
∑

q′ S
±
q′ exp(±iq′rj) , where q and

q′ run over N/2 wave vectors in the reduced BZ of each

sublattice. Using this transformation the equation for

the Fourier representation of the matrix GF (4) can be

written in the from

Ĝ(q, ω) = {ωÎ − V̂ (q)}−1 × 2σ Î1, (6)

where Î is the unity matrix, Î1 is a diagonal matrix with

the elements d11 = d33 = 1 and d22 = d44 = −1, and

the interaction matrix is given by

V̂ (q) =













A 0 B(q) C(q)

0 −A −C(q) −B(q)

B(q) C(q) A 0

−C(q) −B(q) 0 −A













. (7)

Here the interaction parameters are:

A = σ Jx(0) = σ [J(0) + 2Γx],

J(q) = 2J (cos qx + cos qy) + 2Jz cos qz ,

B(q) = σ Γy cos qy, C(q) = σ [J(q) + Γy cos qy]. (8)

The spectrum of spin waves is determined from the

equation

Det |ωÎ − V̂ (q)| = 0. (9)

After some algebra we obtain the biquadratic equation

for the frequency ω of spin-wave excitations:

ω4 − 2ω2[A2 + B2(q)− C2(q)] + [B2(q)− C2(q)]2 −
− 2A2[C2(q) +B2(q)] +A4 = 0.

The solution of this equation reads
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ων(q) = ±{A2 +B2(q)− C2(q) + 2νAB(q)}1/2 ≡
≡ ±σ εν(q), (10)

where ν = ±1. The energy of excitations for “acoustic”

ε−(q) and “optic” ε+(q) modes are

ε−(q) =
{

J2(0)− J2(q) + 4Γx[J(0) + Γx]−

− 2 Γy [J(0) + J(q) + 2Γx] cos qy

}1/2

, (11)

ε+(q) =
{

J2(0)− J2(q) + 4Γx[J(0) + Γx] +

+ 2Γy[J(0)− J(q) + 2Γx] cos qy

}1/2

. (12)

These two branches are coupled by the relation

ε−(q+Q) = ε+(q) for the AF wave vector Q.

For the symmetric compass-model interaction, Γx =

= Γy = Γ, for q = 0 we have the gapless acoustic mode

while the optic mode has a gap:

ε−(0) = 0, ε+(0) = 2
√

Γ J(0) + 2Γ2 > 0. (13)

For the wave vector q = Q we have the opposite re-

sults: ε−(Q) = ε+(0) > 0, ε+(Q) = ε−(0) = 0 . In

the anisotropic case Γx > Γy the spectrum of excita-

tions has gaps both at q = 0 and Q:

ε−(0) = ε+(Q) = 2
√

(Γx − Γy) [J(0) + Γx]. (14)

For a conventional AF Heisenberg model with Γx =

= Γy = 0 we have only one branch with the dispersion

ε−(q) = ε+(q) =
√

J2(0)− J2(q) which is gapless both

at q = 0 and Q.

A similar equation of motion method for the matrix

GF (4) can be employed in the linear spin-wave the-

ory (LSWT) using the transformation S+
i =

√
2S ai,

S−
i =

√
2S a†i , Sx

i = S − a†iai for the sublattice A

and the similar transformation for the sublattice B

(ai → b†i ). Then keeping only linear terms in the bose-

like operators ( ai, a
†
i ) and ( bi, b

†
i ) we obtain Eqs. (10)–

(12) for the spin-wave spectrum in LSWT with the sub-

lattice magnetization σ substituted by spin S. The same

spectrum in LSWT was obtained in Refs. [5, 6]. Note

that in the RPA the energy of spin excitations ω±(q),

Eq. (10), is reduced in comparison with the LSWT since

σ < S even at zero temperature due to zero-point fluc-

tuations in the AF state. The spectrum (10) for the

symmetric compass model, Γx = Γy , is similar to the

spectrum of the anisotropic AF Heisenberg model con-

sidered in Ref. [13].

In Fig. 1 the spectrum of spin waves ω±(q) in

the plane in RPA for the parameters J = 65meV,

Γ = 3.4meV found for Ba2IrO4 [11] is shown at

Fig. 1. Spectrum of spin-wave excitations ω
−
(q) (bold

line) and ω+(q) (dashed line) along the symmetry direc-

tions in the BZ for the symmetric compass model with

Γx = Γy = Γ = 0.052 J and Jz = 0

T = 0. The spectrum ω−(q) shows a gap at the wave

vector Q given by ω−(Q) = 2 σ
√

Γ J(0) + 2Γ2 ≈
≈ 1.48 J

√

Γ/J ≈ 22meV for σ = 0.37. This value

is comparable with the maximum energy of excita-

tions ωmax
− (Q/2) = 4 σ J

√

1 + Γ/J ≈ 1.5 J that gives

ω−(Q)/ωmax
− (Q/2) ≈ 0.22. We can suggest that the

spin-wave spectrum in Ba2IrO4 should be similar to that

one measured by RIXS in Sr2IrO4 [9]. The latter was fit-

ted by a one-branch phenomenological J−J ′−J ′′ model

with J = 60meV, J ′ = −20meV, and J ′′ = 15meV.

The spectrum does not reveal a gap in the acoustic

branch ω−(q) at Q as for Ba2IrO4. However, since

the intensity of scattering on magnons is proportional

to 1/ω(q) , strong scattering on the gapless branch

ω+(q) → 0 for q → Q completely suppresses scatter-

ing on the gapped ω−(q) branch. To distinguish scat-

tering on the two branches, high-resolution studies are

necessary. We have found the energy of excitations at

q1 = (π/2, π/2) , ω−(q1) = ω+(q1), to be nearly equal

to ω±(q = π, 0) (up to ±Γ/J ), while in the RIXS ex-

periment ω(q1) ≈ (1/2)ω(q = π, 0) was found. Possibly,

this difference can be explained by magnon interaction

with spin-orbital excitations observed in [9] which are

not taken into account in the model (1).

Fig. 2 shows the spin-wave dispersion for large

anisotropic interaction, Γx = 8.9 J, Γy = 4.5 J used

in Ref. [5] in numerical calculations with Lanczos ex-

act diagonalization. Our RPA calculations give a simi-

lar formula for the spectrum as in LSWT except for the

prefactor σ = 0.44 instead of S = 1/2 in LSWT. The

dispersion curves are in good agreement with numeri-

cal ones shown by circles which were multiplied by the

factor 10/4, since in Ref. [5], instead of spin 1/2 oper-
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Fig. 2. Spectrum of spin-wave excitations ω
−
(q) (bold line)

and ω+(q) (dashed line) along the symmetry directions in

the BZ for the anisotropic compass model with Γx = 8.9 J ,

Γy = 4.5J , Jz = 0. Circles are numerical results from

Ref. [5]

ators, the Pauli matrices are used so that the exchange

integral I corresponds to our (1/4)J in Eq. (1), and in

Fig. 4 of Ref. [5] the energy unit is Jc = 10I. The spec-

trum reveals a large gap at all wave vectors caused by

the large value of Γx and a noticeable dispersion only

along the Γ(0, 0) → Y (0, π) direction due to a large, in

comparison with J , interaction Γy = 4.5 J .

To calculate the sublattice magnetization σ = 〈Sx
i 〉

in RPA, we use the kinematic relation Sx
i = 1/2−S−

i S
+
i

for spin S = 1/2 which results in the self-consistent

equation

σ =
1

2
− 1

N/2

∑

q

〈S−
q
S+
q
〉. (15)

The spin correlation function 〈S−
q
S+
q
〉 can be calculated

from the GF 〈〈S+
q
|S−

q
〉〉ω which follows from the GF (6):

〈〈S+
q
|S−

q
〉〉ω = 2σ

aq(ω)

[ω2 − ω2
−(q)][ω

2 − ω2
+(q)]

, (16)

aq(ω) = ω3 +Aω2 − [A2 +B2(q)− C2(q)]ω −
−A3 +A [B2(q) + C2(q)].

Using the spectral representation for GFs, for the cor-

relation function we obtain

〈S−
q
S+
q
〉 = 2σ

∑

µ,ν=±1

Iµν(q)N [µων(q)], (17)

where N(ω) = [exp(ω/T ) − 1]−1, and the contribution

from the four poles of the GF (16) is given by

Iµν (q) =
aq[µων(q)]

8µνων(q)AB(q)
. (18)

Note that Iµν(q) does not depend on σ.

Using relation (17) we perform the self-consistent so-

lution of Eq. (15) for the magnetization σ. Fig. 3 shows

Fig. 3. Sublattice magnetization σ = 〈Sx
i 〉 for the param-

eters Jz = 5 · 10−5 J , Γx = 0.052 J for Γy/Γx = 1 (solid

line), 0.95 (dashed line), 0.5 (dotted), and for Γy/Γx 6 0.1

(dash-dotted)

the sublattice magnetization for Jz = 5 × 10−5 J ,

Γx = 0.052 J for various Γy/Γx. For the symmetric com-

pass model, Γx = Γy = 0.052 J , the Néel temperature

TN = 0.365 J = 275K is close to TN = 240K observed in

experiment for Ba2IrO4. We stress that the anisotropy

of the compass-model interaction, Γy/Γx < 1 , enhances

TN.

To study the TN dependence on the parameters of

the model, we consider Eq. (15) in the limit σ → 0. In

this limit N(ων) ≈ T/σεν , and for the Néel temperature

we have the equation:

1

2
=

1

N/2

∑

q

∑

µ,ν=±1

Iµν(q)
2TN

µεν(q)
. (19)

Therefore,

TN =
1

4C
, C =

1

N/2

∑

q

∑

µ,ν

Iµν(q)

µεν(q)
. (20)

Let us study in which cases the integral over q in (20)

has a finite value that results in a finite TN.

At first we consider the symmetric compass model,

Γx = Γy = Γ. In this case ε−(q) = 0 at q = 0 and

ε+(q) = 0 at q = Q. Since these two branches are

symmetric, we can consider only the divergency of the

integral in (20) at q = 0 for ε−(q) given around q = 0

by
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ε2−(q) = 2[J(0) + Γ](J q2x +

+ {J + Γ2/[J(0) + Γ]}q2y + Jz q
2
z). (21)

The integral in (20) diverges as
∫

d3q/ε2−(q) if any co-

efficient before qx, qy or qz in (21) is zero. In particular,

for nonzero J(0) there is no LRO at finite T for Jz = 0.

In the limiting case Γ → 0 we have lim Iµν(q) =

= (A+ µωq)/(4µωq) with ωq =
√

A2 − C2(q). From

Eq. (20) we get the conventional formula for TN of the

AF Heisenberg model (c.f. Ref. [14]):

TN(Γ = 0) =

[

8J(0)

N

∑

q

1

J(0)2 − J2(q)

]−1

. (22)

Thus, for a symmetric 2D compass model we have no

LRO at finite T . To obtain LRO, we must have finite

values of both J and Jz. The Néel temperature TN as

a function of the interplane coupling Jz is shown in

Fig. 4 for the interaction Γx = Γy = 0.052 J and for

Fig. 4. Néel temperature TN as a function of Jz with

Γx = Γy = 0.052 J (solid line) and Γx = Γy = 0 (dashed

line)

Γx = Γy = 0. We can conclude that the compass-model

interaction enhances the Néel temperature and, in par-

ticular, the anisotropy of the compass-model interaction

results in a further increase of TN as shown in Fig. 3. In

the anisotropic case Γx > Γy the spectrum of excita-

tions has a gap at q = 0, Eq. (14), and therefore neither

branch of this spectrum ever reaches zero, so that we

have a finite TN even for Jz = 0. Fig. 5 demonstrates

the dependence of TN on Γx for Jz = 0, Γy = 0.1 Γx,

and Γy = 0.9 Γx. For Γx → 0 the Néel temperature

goes to zero as shown in the inset.

To summarize, we have studied the spin-wave

spectrum for the Heisenberg model with anisotropic

compass-model interaction within the RPA. The spec-

trum has gaps at q = 0 or at the AF wave vector Q for

Fig. 5. Néel temperature TN as a function of Γx for Jz = 0,

Γy = 0.1Γx (solid line) and Γy = 0.9Γx (dashed line). In

the inset the 1/TN dependence is shown in the logarithmic

scale for small Γx

nonzero compass-model interactions. The calculation of

the Néel temperature TN shows that for the symmetric

compass-model interaction, Γx = Γy, and a nonzero ex-

change interaction J , the AF LRO at finite T can exist

only for a finite coupling Jz between the planes. For the

anisotropic compass-model interaction, Γx > Γy, and a

finite exchange interaction J in the plane, the AF LRO

with finite Néel temperature emerges even in the 2D

case as observed in finite cluster calculations [5, 6]. In

any case, TN is enhanced by the compass-model inter-

action.
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