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We overview transport properties of an Aharonov–Bohm interferometer made of a single-channel quantum

ring. Remarkably, in this setup, essentially quantum effects survive thermal averaging: the high-temperature

tunneling conductance G of a ring shows sharp dips (antiresonances) as a function of magnetic flux. We dis-

cuss effects of electron-electron interaction, disorder, and spin-orbit coupling on the Aharonov–Bohm transport

through the ring. The interaction splits the dip into series of dips broadened by dephasing. The physics behind

this behavior is the persistent-current-blockade: the current through the ring is blocked by the circular current

inside the ring. Dephasing is then dominated by tunneling-induced fluctuations of the circular current. The

short-range disorder broadens antiresonances, while the long-range one induces additional dips. In the presence

of a spin-orbit coupling, G exhibits two types of sharp antiresonances: Aharonov–Bohm and Aharonov-Casher

ones. In the vicinity of the antiresonances, the tunneling electrons acquire spin polarization, so that the ring

serves as a spin polarizer.
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1. Introduction. A major focus of interest in

nanophysics [1] has been quantum interference effects on

one hand and charge-quantization effects on the other,

both of which become more prominent with decreasing

dimensionality and size of the device. The prime device

for specifically probing the interference of electrons is a

quantum ring connected to the leads. The conductance

of the ring G(φ) exhibits the Aharonov–Bohm (AB) ef-

fect [2, 3], i.e., changes periodically with the dimension-

less magnetic flux φ = Φ/Φ0 threading the ring – with

a period 1 – entirely due to the interference of electron

trajectories winding around the hole (here Φ0 = hc/e is

the flux quantum). This effect is one of the most beauti-

ful manifestations of the wave nature of electrons. The

key physical issue – the sensitivity of the phase of an

electronic wavefunction to a magnetic flux – enables the

design of quantum AB interferometers [4–20] that can

be tuned by an external magnetic field.

1)See Supplemental material for this paper on JETP Letters
suite: www.jetpletters.ac.ru.

2)e-mail: kachor.valentin@gmail.com

The simplest realization of such an interferometer

is a single-channel electronic quantum ring with a tun-
neling coupling to the leads, Fig. 1. Direct confrontation

with experiment appears now to be possible since many-

electron nanorings with a few or single conducting chan-

nels have been manufactured [21–25]. In this paper, we

overview transport properties of this archetypic setup

and demonstrate that they are governed by quantum

effects even at high temperatures.

At low temperature T, the tunneling conductance of

this device exhibits narrow resonant peaks [26–33]. The

peak arises each time when one of the flux-dependent

energy levels in the ring crosses the Fermi energy (AB

resonances are also affected by the Coulomb blockade

[34, 35]). Based on this physical picture, one could ex-

pect the suppression of the resonance structure at T ≫
≫ ∆, where ∆ is the level spacing in the ring. Remark-

ably, this naive expectation is incorrect and the interfer-

ence effects are not entirely suppressed by the thermal

averaging. In particular, for T ≫ ∆ the conductance

of the noninteracting clean ring tunnel-coupled to the

contacts exhibits sharp narrow dips (antiresonances) at
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Fig. 1. Single-channel quantum ring and its energy levels

φ = 1/2+n, where n is integer (see Fig. 2) [36–38]. The

physics behind this antiresonance is the destructive in-

terference in the tunneling process via pairs of quantum

levels in the ring. For φ = 1/2 the levels with oppo-

site parities are exactly degenerate. On the other hand,

the tunneling amplitudes for such levels have opposite

signs, so that the total transmission coefficient is exactly

zero for an arbitrary energy ǫ of the tunneling electron:

T (φ, ǫ)|φ=1/2 ≡ 0.As a consequence, the averaged trans-

mission coefficient T (φ) = 〈T (φ, ǫ)〉ǫ (here averaging is

taken over temperature window) shows a sharp antires-

onance (see Fig. 2). This effect and its generalizations

in the presence of electron-electron interaction, disor-

der, and spin-orbit (SO) coupling is the subject of this

review.

The basic physics of the single-channel AB interfer-

ometer made up of – ultimately one-dimensional (1D) –

quantum wires becomes conceptually intricate in the

presence of interaction. Indeed, it is well known that

e−e interactions in 1D transform the electron gas into

a Luttinger liquid (LL) [39]. A key concept in the study

of coherent transport of interacting electrons is that of

dephasing of electron waves, which at low temperature

T is due to electromagnetic fluctuations produced by

e−e interactions [1]. The AB effect is one of the most

convenient tools for studying the dephasing processes,

since these directly govern the amplitude of the flux-

dependent part of G(Φ). The distinguishing property

of a single-channel AB interferometer in the tunnel-

ing regime is that the dephasing rate is dramatically

suppressed due to the quantization in an almost closed

ring [38]. The interference pattern in the presence of

Fig. 2. Resonances in the transmission coefficient of a clean

non-interacting ring at given energy (upper panel) and an-

tiresonance in the thermally-averaged transmission coeffi-

cient (lower panel)

interaction consists of a series of antiresonances broad-

ened by dephasing. The physics behind this behavior is

the persistent-current-blockade: the current through the

ring is blocked by the circular current inside the ring.

Dephasing is then dominated by tunneling-induced fluc-

tuations of the (almost quantized) circular current.

The effect of disorder on the high-temperature trans-

port through a quantum ring depends on the range

of impurity potential [40]. In the absence of electron-

electron interaction, the short-range potential broadens

the AB antiresonances, while the long-range smooth dis-

order induces negative resonant peaks at integer values

of the flux. The shape of the peaks in the presence of

disorder turns out to be essentially non-Lorentzian.

The spin-dependent transport through a ballistic

single-channel AB interferometer in the presence of

spin-orbit coupling exhibits the interplay of AB and

Aharonov–Casher (AC) effects [41]. Importantly, the

spin-selective properties of the quantum-ring setup also

survive the thermal averaging. Specifically, the SO in-
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teraction leads to the splitting of the high-temperature

conductance antiresonances into two dips, the distance

between dips being proportional to the AC phase. The

latter is the spin analog of the orbital AB phase and

arises due to a built-in effective magnetic field induced

by the SO coupling. In the vicinities of the dips the

tunneling electrons acquire polarization P(φ). At zero

external field (φ = 0) the conductance G(0) exhibits

series of sharp AC antiresonances.

The review is organized as follows. In Section 2 we

discuss the transmission through a clean ring without

interactions. Section 3 overviews the physics in a clean

ring with the electron-electron interaction. Section 4 is

focused on the disordered non-interacting ring. Finally,

the setup with a SO coupling is discussed in Section 5. In

all the cases, we address the high-temperature regime,

T ≫ ∆ ≫ Γ, (1)

where Γ is the tunneling rate.

2. Clean quantum ring: noninteracting elec-

trons. The conductance of a ring G(φ) = G(φ + 1)

is a periodic function of φ irrespective of the particu-

lar form of the electron Hamiltonian. We begin by dis-

cussing the behavior of G(φ) for T ≫ ∆ in the case of a

clean (disorder-free) ring and noninteracting electrons.

For elastic transmission, G(φ) per spin in units of e2/h

is given, in the linear response limit, by the thermally-

averaged transmission coefficient:

G(φ) = T (φ) ≡ 〈T (φ, ǫ)〉ǫ, (2)

where 〈. . .〉ǫ = −
∫

dǫ (. . .)∂ǫfT and fT (ǫ) is the Fermi

distribution. Below, we neglect the ǫ dependence of the

envelope of the otherwise periodic-in-ǫ, with a period ∆,

function T (φ, ǫ) in the vicinity of the Fermi energy ǫF
for |ǫ − ǫF| . T . Then, Eq. (2) in the limit T ≫ ∆

reduces to the average over ǫ within the interval of

width ∆. For the linearized dispersion relation with ve-

locity v, the Hamiltonian of noninteracting electrons in

an isolated ring in the presence of flux φ is written as

Hring = −iv
∑

µ

∫ L

0 dxψ
†
µ(∂x−2πiφ/L)ψµ, where µ = ±

is the electron chirality, L the circumference of the ring.

Consider first a fully symmetric setup, with identi-

cal tunnel contacts and the interferometer arms of equal

length (Fig. 1). Assume also that the tunnel contacts are

pointlike, with the tunnel Hamiltonian given by

Htun = t0[ψ
†
Lψ(0) + ψ†

Rψ(L/2) + h.c.], (3)

where ψL (ψR) are the electron operators in the left

(right) lead (not necessarily a one-dimensional lead) at

the points of the contacts and ψ(x) = ψ+(x) + ψ−(x).

The tunneling rate (in the limit of weak tunneling) reads

Γ = 2γ∆/π, where ∆ = 2πv/L is the level spacing in the

isolated ring for given chirality and the dimensionless

parameter γ = (2πρ/v)|t0|2 (tunneling transparency of

the contact) is expressed in terms of ρ, the (assumed

structureless) density of states in the leads at the points

of the contacts.

In the tunnel-coupled ring, electrons experience

backscattering at the contacts, the amplitude of which

(for real t0) is tb = −γ/(1 + γ). The amplitude to stay

in the ring without changing chirality after passing the

contact reads tin = 1/(1 + γ). The amplitude of trans-

mission through the ring t(φ, ǫ) is given by a sum of

the amplitudes of the trajectories that connect contact

a to contact b (Fig. 1), including those with multiple

backscattering by the contacts [38, 40]:

t(φ, ǫ) =

∞
∑

n=0

(β−
n + β+

n )e
ikL(n+1/2), (4)

where n is the number of times the electron passes con-

tact b without exiting the ring and k is the wavenumber.

All trajectories for given n, with an arbitrary sequence

of chiralities, have the same length L(n + 1/2). The

terms β−
n and β+

n separate the contributions of trajec-

tories that end up running clock- and counterclockwise,

respectively. These satisfy the recursion relation

βn+1 = Âβn (5)

for the vector βn = (β+
n , β

−
n ), where

Â =

[

t2ine
−2πiφ + t2b tbtin(e

−2πiφ + 1)

tbtin(e
2πiφ + 1) t2ine

2πiφ + t2b

]

. (6)

The element Aij of the matrix Â (multiplied by

exp(ikL)) is the sum of the amplitudes of the trajec-

tories starting at the contact b (see Fig. 1) and mak-

ing a single return to the same contact (indices i and

j specify, respectively, the final and initial directions of

motion: i = ±, j = ±). The components of the vec-

tor β0: β
±
0 = −2γe∓iπφ/(1 + γ)2, yield contributions

of shortest counterclockwise and clockwise trajectories,

respectively. Importantly, at φ = 1/2, for each path con-

tributing to β−
n there exists a “mirrored” path (with

µ → −µ on each segment) whose contribution to β+
n

has an opposite sign. It is this destructive interference

that leads to the vanishing of T (1/2, ǫ) for arbitrary ǫ

(and, therefore, to the vanishing of G(1/2) in the case of

noninteracting electrons for any dispersion relation and

any distribution function).
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In the limit T ≫ ∆, only the products of ampli-

tudes with the same n are not suppressed in 〈|t(φ, ǫ)|2〉ǫ
by thermal averaging, so that, for the ǫ-independent β±

n ,

T (φ) =

∞
∑

n=0

|β−
n + β+

n |2 =

∞
∑

n=0

∣

∣

∣
(e ·Ânβ0)

∣

∣

∣

2

, (7)

where e = (1, 1) is the unit vector. The sum in Eq. (7) is

expressible [40], quite generally, solely in terms of detÂ

and TrÂ. For Â from Eq. (6), the result reads [38, 40]

T (φ) =
2γ cos2(πφ)

cos2(πφ) + γ2
. (8)

For γ ≪ 1, the antiresonance has a Lorentzian shape:

T (φ) ≃ 2γ
π2(δφ)2

π2(δφ)2 + γ2
, (9)

where δφ = φ− 1/2 (Fig. 2).

Apart from the cancellation of the contributions of

mirrored paths in Eq. (4), the Lorentzian in Eq. (9) can

be understood [38, 40] as following from the destruc-

tive interference in resonant scattering on pairs of al-

most degenerate (for |δφ| ≪ 1) levels of different “par-

ity”. In a closed ring, the energies of states with chi-

rality µ are given by ǫµm = (m − µφ)∆, where m is

an integer. The eigenfunctions are the circulating waves

ψ±
m(x) ∝ exp(±2πimx/L). At φ = 1/2, all the levels are

exactly double degenerate with ǫ+m+1 = ǫ−m (this is true,

in fact, for an arbitrary dispersion law). In the vicinity

of the level crossing (Fig. 1), resonant scattering on the

level pairs yields

T (φ) ≃ 4γ2v2
〈

∣

∣

∣

∑

m
gm(ǫ, L/2)

∣

∣

∣

2
〉

ǫ

, (10)

where

gm(ǫ, x) =
1

L

[

e2iπ(m+1)x/L

ǫ− ǫ+m+1 + iΓ/2
+

e−2iπmx/L

ǫ− ǫ−m + iΓ/2

]

(11)

is the contribution of the mth two-level system to the

electron Green function inside the ring, with the res-

onant escape of electrons into the leads accounted for

(solely) by the broadening in the energy denominators

[40]. The two terms in gm(ǫ, L/2) exactly cancel each

other for φ = 1/2. In the limit γ ≪ 1, the integrand

|∑m gm|2 in Eq. (10) reduces to the sum over the pairs
∑

m |gm|2. In turn, |gm|2 can be represented as a sum

of the “classical” contribution, which describes indepen-

dent scattering on each of the levels in the pair, and

the interference contribution, which comes from the

product of two terms in gm. The corresponding clas-

sical contribution to the conductance, Tcl(φ) = 2γ, is

φ independent, whereas the interference contribution,

Tint(φ) = −2γ3/[γ2 + π2(δφ)2], is sharply peaked at

φ = 1/2. The sum T (φ) = Tcl(φ) + Tint(φ) reproduces

the Lorentzian in Eq. (9).

Note that, in the isolated ring, all energy levels are

double degenerate at both half-integer and integer fluxes

(in the latter case, with ǫ+m = ǫ−m). However, resonant

scattering on the pairs of levels of the same parity does

not lead to any resonant feature in T (φ) in Eq. (8) at

φ = 0. This is because of multiple backscattering at

the contacts (inside the ring) that crucially affects res-

onant scattering at φ = 0 [38], in contrast to φ = 1/2.

At |φ| . γ, even if the amplitude of a single backscat-

tering event is small (γ ≪ 1), the enhancement of the

effect of backscattering by multiple returns totally sup-

presses the resonance at the level (anti)crossing (at or-

der O(γ), the vanishing of the resonance at φ = 0 has

been shown by directly summing up the return ampli-

tudes in Ref. [38]).

Now let us turn to an asymmetric interferometer

with the arm lengths (L ± a)/2. The transmission co-

efficient for T ≫ ∆ and the length mismatch a ≪ L

reads (see Appendix in the arXiv version of Ref. [38] at

arXiv:0911.0911):

T (φ) = 2γ

〈

cos2(πφ) cos2(ka/2)

cos2(πφ) + γ2 cos2(ka/2)
+ (cos → sin)

〉

ǫ

,

(12)

where in the second term the cosines from the first term

are changed to the sines of the same argument. In the

limit Ta/v ≫ 1, thermal averaging in Eq. (12) reduces

to averaging over the phase ka within the interval of

width 2π, which gives

T (φ) = 2γ [F (cosπφ) + F (sinπφ) ], (13)

where F (z) = z2
[

√

z2 + γ2
(

|z|+
√

z2 + γ2
)]−1

. For

γ ≪ 1, the function G(φ) in Eq. (13) shows sharp an-

tiresonances at both half-integer and integer φ. In con-

trast to Eq. (8), however, G(φ) does not vanish at the

resonance points, with the depth of the antiresonances

at both φ = 0 and 1/2 being half that of the antires-

onance at φ = 1/2 for a = 0. Thus, in the strongly

asymmetric setup with Ta/v≫ 1, the amplitude of the

dips at half-integer fluxes becomes smaller compared to

the symmetric case, while the additional dips appear at

integer fluxes. The shape of the dips, even for γ ≪ 1, is

now more complicated than the Lorentzian (cf. Eq. (9)):

T (φ) ≃ γ +
2γπ2(δφ)2

√

π2(δφ)2 + γ2
[

π|δφ|+
√

π2(δφ)2 + γ2
] ,

(14)
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where δφ is the deviation from the resonance.

In the opposite limit of Ta/v ≪ 1, the averaging over

ǫ in Eq. (12) amounts to substituting the Fermi wavevec-

tor kF for k. For γ ≪ 1, there are then two series of nar-

row antiresonances, at integer and half-integer fluxes.

Unlike in Eq. (13), the series are not simply shifted in

φ by half a period. For the antiresonance at an integer

flux,

T (φ) ≃ 2γ

[

cos2(kFa/2) +
π2(δφ)2 sin2(kFa/2)

π2(δφ)2 + γ2 sin2(kFa/2)

]

,

(15)

whereas T (φ) around a half-integer flux is given by

Eq. (15) with the change cos(kFa/2) ↔ sin(kFa/2). The

amplitudes and the widths of the dips are seen to oscil-

late with varying kFa. In Fig. 3, the dependence of T on

φ for ∆ ≪ T ≪ v/a is shown for kFa = 2π/3.

Fig. 3. Conductance G vs flux φ for kFa = 2π/3. The tun-

neling parameter γ = 0.08

3. Clean interacting ring. The inclusion of electron-

electron interactions leads to profound changes in the

behavior of G(φ) (which is no longer equals to single-

particle transition coefficient T (φ)), as summarized in

Fig. 4. As the strength of interaction α increases, the

single antiresonance at φ = 1/2 (Fig. 4a) first becomes

shallower and broader (Fig. 4b) and then splits up into

a series of sharp antiresonances (Fig. 4c) that show up

all the way between φ = 0 and 1. These interaction-

induced oscillations, termed in Ref. [38] “persistent-

current blockade” (PCB), are due to a peculiar type

of interaction of electrons with the circular current J

inside the ring, resulting in the blocking, for specific

values of φ, of the tunneling current through the ring.

In essence, the interaction with the current J (quantized

due to charge quantization) amounts to the addition of

an effective magnetic flux acting on electrons,

δφJ = −αJ/2, (16)

Fig. 4. Schematic evolution of G(Φ) with increasing in-

teraction strength α: α ≪ (Γ2/∆T )1/2: a single narrow

deep antiresonance at φ = 1/2 (a); (Γ2/∆T )1/2 ≪ α ≪
≪ ΓT/∆2: the antiresonance broadens and becomes shal-

lower (b); α ≫ ΓT/∆2: breaking up of the antiresonance

into “persistent-current blockade” oscillations (c). For fixed

α, the evolution with increasing T follows (a) → (c) → (b)

which produces a shift of the total flux (note that the

effective flux produced by the circulating current is not

at all related to the relativistic Biot–Savart law).

The PCB oscillations – in contrast to the Coulomb-

blockade oscillations [1] – survive thermal averaging at
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large T but are suppressed by dephasing. In a tunnel-

coupled ring, the persistent current exhibits thermal

fluctuations, because of exchange of electrons between

the ring and the leads, accompanied by fluctuations of

the effective flux. These fluctuations are the main source

of dephasing of the AB oscillations, with the dephasing

rate given by

γϕ = 4ΓT/∆. (17)

This “zero-mode dephasing” (ZMD) is strongly affected

by quantization of charge inside the ring: γϕ vanishes

at Γ → 0. Being peculiar to closed geometry, ZMD is

qualitatively different from dephasing in open geome-

try, where two quantum wires with a magnetic flux be-

tween them are weakly tunnel-coupled at two points.

In the latter case, the dephasing rate is given by the

single-particle decay rate in a homogeneous Luttinger

liquid (∼α2T for spinless electrons) [42–46]. A remark-

able feature of γϕ in Eq. (17) is that it does not depend

on α3).

We assume that the Coulomb interaction is screened

by a ground plane and take the interaction to be point-

like. The interacting part of the Hamiltonian reads

Hint =
V0
2

∑

µ

∫ L

0

dxnµn−µ, (18)

with the dimensionless interaction constant

α = V0/2πv. In this section, we focus on the case

of spinless electrons. The repulsion between electrons

with the same µ is then accounted for completely in

the renormalization of the velocity v [45, 46]. The

velocity of single-particle excitations is further renor-

malized by the interaction between oppositely moving

electrons and becomes equal to the plasmon velocity

u = v(1 − α2)1/2 (the renormalized level spacing is

∆ = 2πu/L).

The renormalization of the triple junctions a and b

due to virtual processes on energy scales larger than T

yields a T dependent tunneling rate Γ(T ) [47]. In par-

ticular, for α ≫ Γ/∆, backscattering inside the ring at

the tunnel contact may be neglected in the renormal-

ization process and Γ(T ) ∼ Γ(ǫF/T )
(1−K)2/2K , where

K = (1−α)1/2(1+α)−1/2 is the Luttinger constant. For

T ≫ ∆, two contacts are renormalized independently.

3.1. Persistent-current blockade. For T ≫ ∆, the ef-

fect of electron-electron interactions on the single- parti-

cle transmission amplitudes can be described in terms of

scattering on the thermal electromagnetic noise created

by the bath of other electrons. Consider first the bath

3)More accurately, α enters in the renormalization of Γ and the
condition of the applicability of Eq. (17) α ≫ Γ/∆.

with the total number Nµ of electrons in the channel

µ being a quantum number. For the linear dispersion

relation, the density profile nµ(x) for a given chirality

remains unchanged at Γ = 0 and rotates as a whole.

The forward scattering of electrons of chirality µ is then

fully accounted for through the phase they acquire in the

time-dependent potential Uµ(x, t) = V0n−µ(x + µut).

The quasiclassical amplitude of the transition from x =

= 0 to L/2 without winding around the hole is then

given by Aµ
1 = exp

{

iπµφ+iV0
∫ L/2u

0 dt n−µ[x(t)+µut]
}

.

A crucial point is that, even though the time integration

is taken over the half-period, for x(t) = µut the integral

is insensitive to a particular profile of n−µ and only de-

pends on N−µ. This holds true also for the amplitude

with an arbitrary winding number n. As a result, the

interference term in the conductance,

A+
k Ā−

k = exp{2πik[φ− α(N+ −N−)/2]}, (19)

is not suppressed by thermal averaging over fluctuations

of n±(x, t) at fixed N± (it is this averaging that is re-

sponsible for the exponential decay of single-particle ex-

citations in an infinite Luttinger liquid). That is, plas-

mons in the isolated ring do not lead to any dephasing.

Thus, apart from the renormalization of Γ and ∆,

the only effect of the interaction with the bath charac-

terized by fixed Nµ is the effective shift of the flux given

by Eq. (16) with J = N+ − N−. Note that the phase

shift (16) between two interfering waves stems from the

absence of electron-electron scattering within the same

channel µ (Hartree–Fock cancellation [45, 46]). In ef-

fect, for given J , electrons of opposite chirality see dif-

ferent electrostatic potentials, which translates into the

phase difference in Eq. (19). Being inserted in Eq. (8),

δφJ yields a shift of the AB antiresonance, i.e., the

PCB completely blocks the tunneling current through

the ring at φ = 1/2− δφJ .

For a thermodynamic ensemble of the “isolated

baths”, the conductance should be averaged over the

Gibbs distribution of the zero-mode energies [48],

ǫN+N−
= (∆/4K)

[

(N −N0)
2
+K2 (J − 2φ)

2
]

, (20)

where N0 is controlled by the chemical potential and

N = N+ + N− is the total number of electrons in the

ring. Equation (20) describes, quite generally, electro-

statics of a 1D ring. The resulting conductance as a

function of φ shows PCB oscillations with a period α/2

and a Gaussian envelope whose width wT = α(T/∆)1/2

is entirely determined by the statistical weights of dif-

ferent values of J .

3.2. Zero-mode dephasing. Taking into account the

ergodic tunneling dynamics of the electron bath, i.e., the
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time dependence of the circular current, leads to PCB

oscillations in a single ring. In contrast to the isolated

ring, each PCB resonance acquires a width induced by

a finite lifetime of the state with given J . Importantly,

this time is much shorter than the single-electron tun-

neling lifetime Γ−1. Indeed, the time scale for chang-

ing J by unity is given by Γ−1 divided by the number

of levels T/∆ around the Fermi level that participate

in the tunneling dynamics. We identify the interaction-

induced broadening of the PCB resonances with dephas-

ing (Eq. (17)).

For a quantitative analysis of G(φ), we average the

product of the amplitudes in Eq. (19) over realizations

of J(t). This gives the interaction-induced action S(tn),

where tn = 2π(n+ 1/2)/∆ for the winding number n:

e−S(t) =

〈

exp

{

−iα∆
∫ t

0

dt′[N+(t
′)−N−(t

′)]

}〉

.

The interference term δG(φ) = G(φ) −G(0) is affected

by this action:

δG(φ)

G(0)
≃ −2πΓ

∆

∞
∑

n=0

cos(2∆δφtn) e
−Γtn−S(tn). (21)

Next, we represent Nµ =
∑

j n
µ
j as a sum over indi-

vidual energy levels inside the ring. Due to the slow

tunneling exchange with the lead, the occupation num-

bers nµ
j fluctuates between two values, 0 and 1. Hence,

the time evolution of these numbers is a telegraph noise

with the rates Γfj and Γ(1−fj) for scattering “in” (pop-

ulation rate of an empty level with nµ
j = 0) and “out”

(depopulation rate of an occupied level with nµ
j = 1),

respectively. Here fj is the distribution function at the

energy of the jth level. This function is the same for en-

ergy levels in the ring and in the lead. The phase factor

induced by the interaction with the jth level is written

as (we suppress the indexes j and µ for brevity)4):
〈

e−iα∆
∫

t

0
dt′ n(t′)

〉

= (1−f) (P00 + P01)+f (P10 + P11) ,

where Pkl(t) is the conditional quasiprobability, which

yields the mathematical expectation of the phase factor

exp[−iα∆
∫ t

0 dt
′ n(t′)] under the condition that the ini-

tial and final electron states have the occupation num-

bers k and l, respectively. The quasiprobabilities satisfy

the master equations

dP00/dt = −ΓfP00 + Γ(1− f)P01, (22)

dP01/dt = ΓfP00 − [iα∆+ Γ(1− f)]P01, (23)

dP10/dt = −ΓfP10 + Γ(1− f)P11, (24)

dP11/dt = ΓfP10 − [iα∆+ Γ(1− f)]P11, (25)

4)A similar approach was used to describe dephasing of a qubit
by a two-level fluctuator, see Refs. [49–51] and references therein.

with the initial conditions P00(0) = P11(0) = 1,

P01(0) = P01(0) = 0.

For closed ring (Γ = 0) we get P00 = 1, P01 = P10 =

= 0, P11 = eiα∆t, so that the averaged phase factor

reads
〈

e−iα∆
∫

t

0
dt′ n(t′)

〉

Γ=0
= 1− f + fe−iα∆t,

and the action at Γ = 0 is given by

e−S0(t) =
∏

j

|1− fj + fje
−iα∆t|2 ≈

≈ exp

[

−2T

∆
(1− cosα∆t)

]

≈ exp
[

−α2T∆{t2}
]

,

where {. . .} denotes a periodic continuation in t from

the interval −π/α∆ < t < π/α∆. One can check

that Eq. (26) is nothing but the thermodynamic aver-

age e−S0(t) =
〈

e−iαJ∆t
〉

Gibbs
over the zero-mode ener-

gies (20). We see that the function e−S0(t) is sharply

peaked at the points t = 2πm/α∆ with integer m ≥ 0

(see Fig. 5). Hence, in the closed ring the factor e−S0(t)

Fig. 5. Quantum beats in the dephasing action and slow

dephasing

does not decay and shows sharp PCB resonances (quan-

tum beats).

For Γ 6= 0, the solution of the master equations yields

S(t) = −2Re
∑

j ln
[(

eλ
+

j
tλ−j − eλ

−

j
tλ+j

)

/
(

λ−j − λ+j
)

]

,

where λ±j = λ − iα∆fj ± (λ2 + iα∆Γfj)
1/2 and λ =

= (iα∆ − Γ)/2. For α ≫ Γ/∆, the sum in Eq. (21) is

cut off by S(t) at tn ≪ Γ−1, so that we can expand S(t)

in Γ. The linear-in-Γ term,

S1(t) ≃
4ΓT

∆
η(t)

[

t cos2
(

α∆t

2

)

− sin(α∆t)

α∆

]

, (26)

with η(t) = α∆{t}/ sin(α∆t) is responsible for the de-

phasing. For α≪ (∆/T )1/2, the sum in Eq. (21) can be

Письма в ЖЭТФ том 100 вып. 11 – 12 2014



High-temperature Aharonov–Bohm effect. . . 953

replaced by an integral. The latter is dominated by the

vicinity of the points t = 2πm/α∆. At these points for

m≫ 1,

S1(t) ≃ γϕt,

with the dephasing rate γϕ given by Eq. (17). The de-

pendence of dephasing action on time is schematically

plotted in Fig. 5. From Eq. (21) we finally find that the

interference term then can be cast in the form of a Gibbs

sum over zero-mode states:

δG(φ)

G(0)
≃

〈

Γγϕ
(2δφ− αJ)2∆2 + γ2ϕ

〉

Gibbs

≃

≃ Im
(Γ/2wT∆) exp(−δφ2/w2

T )

sin[π(δφ + 2iγϕ/∆)/α ]
. (27)

If α∆ ≫ γϕ, Eq. (27) yields well- separated Lorentzians

(Fig. 4c) of width γφ/∆, centered at integer δφ/α. Note

that, despite the appearance of the PCB fine structure,

the exact period in φ remains unity, as it should be.

In the opposite limit, α∆ ≪ γϕ, the broadening of the

resonances is larger than the distance between them, so

that they merge into a single Gaussian dip of width wT

(Fig. 4b). Equation (27) describes the physically most

transparent case of not too large α ≪ (∆/T )1/2, which

means that the width wT of the envelope of the PCB

resonances is much smaller than the period of the AB

oscillations. At larger α, additional features appear; in

particular, related to a possible commensurability be-

tween δφJ and 1 – these will be considered elsewhere.

It is worth noting that the tunneling broadens also

the plasmon levels inside the ring, which introduces an

additional contribution γp
ϕ to the dephasing rate. Aver-

aging the amplitudes Aµ
k over fluctuations of nµ[x(t)]

that occur on the time scale of Γ−1, we find γp
ϕ ∼

∼ α2ΓT/∆. It follows that for γ ≪ α≪ 1 the dephasing

due to the non-Gaussian zero-mode fluctuations of J(t)

is much stronger than that induced by plasmons.

4. Disordered noninteracting ring. In the above

calculations we considered the case of the clean inter-

acting ring. Now we neglect interaction and discuss the

effect of disorder on the high-temperature conductance

of the ring.

4.1. Long-range disorder. One of the realizations of

the disorder is a weak smooth random potential with the

correlation length much exceeding the electron Fermi

wavelength. In this case, backscattering by disorder is

exponentially suppressed, so that the potential only

leads to the additional phase shift between the right and

left-moving electron waves propagating from contact a

to contact b along upper and lower shoulder of interfer-

ometer, respectively (with zero winding number). We

denote the disorder-induced phase difference between

these two waves as Ψ(ǫ). Such an interferometer is evi-

dently equivalent to the clean one having two arms with

the lengths (L−a)/2 and (L+a)/2,where a ≈ Ψ(ǫF)/kF.

Then, from Eq. (13) we find

T (φ) = 2γ
{

F [sin(πφ), sin(Ψ/2)] +

+ F [cos(πφ), cos(Ψ/2)]
}

,

where F (x, y) = x2y2/(x2+γ2y2). This equation is valid

provided that T (dΨ/dǫ)ǫ=ǫF
≪ 1. As seen, for Ψ 6= 0

there are two dips in the conductance (at φ = 1/2

and 0), the widths and the depths of the dips be-

ing oscillating functions of Ψ = Ψ(ǫF) (in particular,

T (0) = 2γ cos2(Ψ/2), T (1/2) = 2γ sin2(Ψ/2)). Hence,

long-range disorder leads to appearance of the addi-

tional antiresonance in the conductance at φ = 0 and

modifies the antiresonance near φ = 1/2.

4.2. Short-range disorder. Another realization of dis-

order is the potential created by weak short-range impu-

rities, randomly distributed along the ring with the con-

centration ni. Let us characterize the strength of disor-

der by the scattering rate in the infinite wire calculated

by the golden rule. For short-range potential, transport

and quantum scattering rates coincide and are given by

1/τ = 2|r|2vni, where r is the reflection amplitude for a

single impurity (|r| ≪ 1). Substituting in this equation

ni = N/L (here N is the number of impurities in the

ring) we get
1

τ
=
N |r|2∆
π~

. (28)

We restrict ourselves to discussion of the ballistic case,

vτ ≫ L, or, equivalently, N |r|2 ≪ 1.

We will see that the main effect of the short-range

potential is the broadening of the antiresonances. One

could expect that scattering by disorder leads to essen-

tial increase of the resonance width, when τ becomes

shorter than lifetime of the electron in the ring, ~/Γ,

which implies N |r|2 ≫ γ. Another expectation is that in

the regime N |r|2 ≫ γ, when electron experiences many

scatterings during the lifetime and therefore acquires

random phase, the interference is suppressed, and, con-

sequently, the depth of the dip essentially decreases.

However, we will show that the scattering on the impu-

rities comes into play at much smaller disorder strength

when N |r|2 ∼ γ2, so that for γ2 ≪ N |r|2 ≪ 1 the dip

is essentially broadened. Also, in contrast to the naive

expectation, its depth remains on the order of γ.

Now we modify the matrix Â, taking into account

the scattering on the impurities. This matrix becomes

complicated, since it includes the amplitudes of all the

trajectories with scatterings on both contacts and im-

purities, after which an electron returns to contact b.
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However, in the case δφ≪ 1, γ ≪ 1, and N |r|2 ≪ 1, Â

can be simplified [40]:

Â ≈ (1− 2γ)eiβ

[

√

1− |R|2e−2iπφ R

−R∗
√

1− |R|2e2iπφ

]

.

Here, β is the small forward scattering phase for a com-

plex scatterer consisting of N impurities. This phase

is added to the geometrical phase kL and, therefore,

drops out after thermal averaging. The off-diagonal el-

ement, R, is, up to a phase factor, the reflection ampli-

tude from a complex of N impurities. One can expand

R with respect to r. In the lowest order in r we obtain

R ≈ r
N
∑

ν=1
e−2ikxν . This expression takes into account

only one backscattering on impurities during a revolu-

tion around the ring, and is valid in the case N |r|2 ≪ 1.

We see that R depends on positions of all impurities in

the ring R = R(x1, . . . , xN ).

Let us now assume that impurities are randomly dis-

tributed along the ring. This allows us to use Eq. (7)

while performing averaging over k. The sum in Eq. (7)

can be calculated exactly [40]. One can use Eq. (A5)

of Ref. [40] which simplifies after expansion of the nu-

merator and denominator with respect to γ, r and δφ.

Calculations yield the following expression for the trans-

mission coefficient:

T ≈ 2γ

〈

π2δφ2 + (ImR)2/4

π2δφ2 + γ2 + |R|2/4

〉

ǫ

. (29)

This equation is valid provided that γ ≪ 1, N |r|2 ≪ 1,

and δφ≪ 1. The relation between
√
N |r| and γ can be

arbitrary. Physically, appearance of terms proportional

to (ImR)2 and |R|2 in the numerator and denominator

of Eq. (29), respectively, is due to the disorder-induced

repulsion in the pairs of close levels in the ring Ref. [40].

In order to perform the averaging over k, we no-

tice, that for random impurity distribution the averag-

ing over k is equivalent to averaging over xν : 〈· · · 〉k =

〈· · · 〉x1···xN
. Here, we present result for N ≫ 1:

T ≈ 2γ

s2

∞
∫

0

dx
π2δφ2(1 + x) + s2/2

(1 + x)2
exp

(

−xπ
2δφ2 + γ2

s2

)

,

(30)

where s2 = N |r|2/4 (more detailed discussion can be

found in Ref. [40]). This dependence is plotted in Fig. 6.

We see that the transmission coefficient at φ = 1/2 is no

longer equal to zero and the antiresonance broadens. It

is also notable that the dip has a non-Lorentzian shape.

Let us discuss two limiting cases. For
√
N |r| ≪ γ,

the minimal value of conductance is given by T |δφ=0 ≈
≈ N |r|2/4γ, and the width of the antiresonances in-

creases from γ to γ′ = γ + δ where δ ∼ N |r|2/γ. The

Fig. 6. Antiresonance in high-temperature transmission

coefficient in the presence of N randomly distributed im-

purities for
√
N |r| ≫ γ

relative contribution of the disorder to the resonance

width, δ/γ ∼ N |r|2/γ2 = ~/γΓτ, is enhanced by a

factor γ−1 ≫ 1 in comparison with naive expectation

~/Γτ. In the opposite limiting case,
√
N |r| ≫ γ, we get

T |δφ=0 ≈ γ, so that the depth of the antiresonance is

two times smaller compared with the case of clean ring,

while the width is given by γ′ ∼
√
N |r|.

5. Non-interacting ring with spin-orbit cou-

pling. The effect of the spin-orbit (SO) interaction

on the properties of one-dimensional (1D) and quasi

one-dimensional systems, in particular 1D quantum

wires and rings, has attracted much attention [52–73].

The rotation of electron spin in the built-in SO mag-

netic field results in a spin phase shift between clock-

wise and counterclockwise waves, which is a manifes-

tation of the AC effect [73, 74]. The AC phase is

the spin analog of the orbital AB phase. More pre-

cisely, the AC phase is additional with respect to AB

phase and exists even at zero external magnetic field

(Φ = 0). An important consequence is the existence

of the AC oscillations of zero-field conductance G(0)

with the strength of the SO coupling. The AC oscilla-

tions were intensively discussed theoretically [52–58, 61–

64, 66–70, 72] and their signatures were observed ex-

perimentally [59, 60]. Another consequence, especially

important from the point of view of possible applica-

tions, is that the unpolarized incoming electron beam

acquires polarization after passing through the ring, so

that the ring may serve as a spin polarizer. The latter ef-

fect was recently discussed in a number of publications

[55–57, 61, 63, 64, 66, 69, 70] mostly concerned with the

study of the zero-temperature case. The finite tempera-
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ture effects were also analyzed on the basis of numerical

simulations [57, 63, 69].

In this section, we address the role of SO cou-

pling in the transport through a single-channel ring of

radius R. We assume that the SO interaction is de-

scribed by the Rashba Hamiltonian, which for the case

of a straight wire reads ĤSO = α[n × σ̂]p. Here n is

the unit vector parallel to built-in electric field, σ̂ is

the vector of the Pauli matrices, α is the constant of

the SO interaction, and p = ~k is the electron mo-

mentum. In a curved wire, n depends on the coordi-

nate, and the Hamiltonian becomes [53, 54] ĤSO =

= (α/2){[n × σ̂],p}, where {. . .} stands for the anti-

commutator. For a ring with axially symmetric built-in

field, n = (cosϕ cos θ, sinϕ cos θ, sin θ), we find

ĤSO =
iα~

2R

{[

cos θ − sin θe−iϕ

− sin θeiϕ − cos θ

]

, Dϕ

}

. (31)

Here, Dϕ = ∂/∂ϕ + iφ, ϕ is the angle coordinate of

the electron in the ring, θ is the angle between effec-

tive SO-induced magnetic field Beff (this field is pro-

portional to α[p× n]) and the z axis. The problem can

be treated quasiclassically assuming that kR ≫ 1 and

α ≪ v. Within this approximation the effect of the SO

interaction is fully described by the rotation of the elec-

tron spin in the field Beff, which varies along the electron

trajectory [53, 54].

The sum of the amplitudes of the trajectories hav-

ing length Ln, initial spin state |χi〉, and final spin state

|χf 〉 is given by 〈χf |β̂n|χi〉, where β̂n are now 2× 2 ma-

trices. The amplitude of transmission through the ring

with spin state changing from |χi〉 to |χf 〉 is given by

〈χi|t̂|χf 〉, where t̂ = t̂(φ, ǫ) =
∑∞

n=0 β̂n exp(ikLn). The

transmission coefficient reads

T =
1

2

〈

Tr t̂ t̂†
〉

ǫ
=

1

2
Tr T̂ , T̂ =

∞
∑

n=0

β̂nβ̂
†
n. (32)

The electrons passing through the ring acquire spin po-

larization. For the case of unpolarized incoming electron

beam the spin polarization is calculated as

P =

〈

Tr σ̂t̂t̂†
〉

ǫ

2T =
Tr σ̂T̂
2T , (33)

and, therefore, is also expressed in terms of β̂n.

The matrix Â becomes a block matrix:

Â =

[

t2ine
−2πiφM̂ + t2b tbtin(e

−2πiφM̂ + 1)

tbtin(e
2πiφM̂−1 + 1) t2ine

2πiφM̂−1 + t2b

]

.

The matrix M̂ (M̂−1) describes spin rotation after pass-

ing a full circle starting from contact b and propagat-

ing in counterclockwise (clockwise) direction. It can be

written as M̂ = exp(−iρσ̂/2), where ρ is the vector of

spin rotation for counterclockwise propagation around

the ring (starting from contact b): ρ = 4πδ(ex sinϑ −
− ez cosϑ), where

δ =

√

1

4
+ ξ cos θ + ξ2− 1

2
, tanϑ =

ξ sin θ

1/2 + ξ cos θ
. (34)

The coefficient ξ = αkR/~v is the dimensionless pa-

rameter characterizing the strength of SO interaction.

Physically, ξ is the angle of spin rotation in the local

field Beff during the time on the order of R/v. In the

simplest case θ = 0, ξ is proportional to the angle of the

spin rotation after passing around the ring.

The eigenvectors of M̂ are the spinors χ↑ and χ↓ cor-

responding to spin orientation along ρ and −ρ: M̂χ↑ =

= exp(−i · 2π|δ|)χ↑, M̂χ↓ = exp(i · 2π|δ|)χ↓. As follows

from these equations, 2π|δ| is the AC phase [73, 74] in-

duced by the SO interaction.

For ξ ≫ 1, the frequency of spin precession in the

field Beff is much larger than the orbital frequency v/R

and the direction of the spin follows adiabatically the

direction of Beff. In this case, 2πδ ≈ 2πξ− π(1− cos θ).

Thus, in the adiabatic limit the AC phase separates into

two parts [53]: dynamical contribution 2πξ and geomet-

rical SO Berry phase [75] π(1−cos θ) which is the half of

the solid angle subtended by Beff when electron passes

the full circle.

The calculation presented in Ref. [41] yields T̂ (φ) =

= T0(φ − |δ|)|χ↑〉〈χ↑| + T0(φ + |δ|)|χ↓〉〈χ↓|, where T0
is the transmission coefficient of the spinless electrons

given by Eq. (8). The expressions for the full transmis-

sion coefficient and the spin polarization become

T (φ) =
T0(φ+ δ) + T0(φ − δ)

2
, P(φ) = P (φ)

ρ

ρ
, (35)

where

P (φ) =
T0(φ+ |δ|)− T0(φ− |δ|)
T0(φ+ |δ|) + T0(φ− |δ|) . (36)

These equations are illustrated in Fig. 7. As seen, there

are two dips (per period) in the function T (φ), corre-

sponding to φ = 1/2±δ. At these two points the incom-

ing electrons with spin states described, respectively, by

χ̃↓ and χ̃↑ are totally blocked by the destructive inter-

ference. Therefore, the tunneling current becomes fully

polarized in the direction of ρ for φ = 1/2± δ.

One sees that the SO-induced splitting of the res-

onances is proportional to the AC phase 2πδ. Equa-

tions (35) and (36) reveal coexisting of two types of

oscillations: the AB oscillations with φ and AC oscilla-

tions with δ. Importantly, AC oscillations of tunneling

conductance exist even in the case of zero external field.
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Fig. 7. Transmission coefficient (a) and the spin polariza-

tion of the transmitted electrons (b) in the direction of

vector ρ for the ring with the SO interaction (γ = 0.02,

ξ = 0.2, θ = π/4)

Indeed, for φ = 0, since T0(δ) is an even function, one

finds T = T0(δ), P = 0. Thus, the transmission coeffi-

cient exhibits the AC oscillations with the period δ = 1.

For the case of an almost closed ring, γ ≪ 1, the oscil-

lations have the form of sharp antiresonances periodic

in δ.

Equations presented in this section are valid for

T ≫ ∆ and arbitrary strength of tunneling coupling

(0 < γ <∞). They represent a generalization of the an-

alytical results obtained previously [55, 57, 58, 61, 63]

for T = 0 and strong tunneling coupling (γ ≃ 1).

6. Summary. In this review, we have addressed the

Aharonov–Bohm effect in transport through a single-

channel quantum ring tunnel-coupled to the leads, fo-

cusing on the case of large temperature (compared to

the level spacing). Remarkably, in this high-temperature

regime, there are quantum interference effects that sur-

vive thermal averaging. In a clean non-interacting ring

(Section 2), the tunneling conductance exhibits sharp

dips at half-integer values of the magnetic flux. The

conductance vanishes exactly at these values because

of destructive interference of amplitudes of tunneling

through degenerate energy levels of the ring. This effect

is not affected by thermal averaging.

Electron-electron interactions lead to profound and

unusual effects in transport through a single-channel

ring (Section 3), owing to an interplay of the AB effect

and quantization in an almost close system. The quan-

tization of the circular current inside the ring gives rise

to the phenomenon of Persistent-Current Blockade. The

tunneling conductance through the ring, G(φ), exhibits

a series of sharp antiresonances broadened by dephasing,

the distance between which is controlled by the interac-

tion strength. The dominant contribution to the dephas-

ing rate is due to tunneling-induced fluctuations of the

circular current – we have termed this novel type of de-

phasing “Zero-Mode dephasing”. Importantly, the quan-

tization of excitation spectra in an almost closed geom-

etry significantly suppresses dephasing, as compared to

setups with open geometry.

In Section 4 we addressed the effect of weak disorder

on the high-temperature transport through a ring. In

the absence of interaction, the short-range disorder po-

tential broadens the AB antiresonances, while the long-

range smooth potential leads to appearing of negative

resonant peaks at integer values of the flux.

The role of the spin-orbit coupling was discussed in

Section 5, where the high-temperature transmission co-

efficient T (φ) and the spin polarization P(φ) were con-

sidered in the presence of the Rashba SO interaction.

Both T (φ) and P(φ) reveal coexistence of two types

of periodic oscillations: the AB oscillations with mag-

netic flux and the Aharonov–Casher oscillations with

the strength of SO interaction. For weak tunneling cou-

pling, the oscillations have the form of the sharp an-

tiresonances. Specifically, there are two antiresonances

(per period) in the dependence T (φ) (instead of one

antiresonance without SO coupling). In the vicinity of

each antiresonance, the electron beam passing through

the ring acquires strong spin polarization.
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