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In this note we examine a possible extension of the matrix integral representation of knot invariants beyond

the class of torus knots. In particular, we study a representation of the SU(2) quantum Racah coefficients

by double matrix integrals. We find that the Racah coefficients are mapped to expansion coefficients in some

basis of double integrals. The transformed coefficients have a number of interesting algebraic properties.
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Classification of knots is a central problem of knot

theory. One way to solve it is to derive most general for-

mulae for the topological invariants, which would dis-

tinguish any pair of knots. For torus knots a general

formula, computing the corresponding HOMFLY poly-

nomials, was derived by Rosso and Jones [1]. Since the

work of Rosso and Jones a number of new general for-

mulae was derived (e.g. [2–8] and references therein),

which yield (coloured) Jones or HOMFLY polynomials

of certain knot series.

One possible way to extend the known results would

be to construct a matrix integral representation of the

knot invariants. The relevant matrix integral for the

Rosso–Jones formula was derived in [9, 10]. Per se,

the restriction to the Rosso–Jones formula seems to be

solely a technical issue and the authors are unaware of

any conceptual obstacles to generalize this result to a

more general class of knots or links. Indeed, the exis-

tence of the matrix model formulation is advocated by

the relation of the knot invariants to the generic Hurwitz

τ -functions, as observed in [11].

In a recent work [12] a step towards a generalization

of the matrix model beyond the torus knots was taken.

For a series of twisted knots it was demonstrated that

it is natural to consider matrix integrals with the in-

tegration measure made of the Laplace evolution of the

corresponding Jones polynomial. Unfortunately, this ap-

proach requires some unknown ingredient, and the naive

matrix integrals give a discrepancy in the perturbative

expansion of HOMFLY polynomials starting from g5s
terms.
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The topological quantum field theory (TQFT) ap-

proach [13] allows one to write generic formulae for

knots invariants. However, in this case the final result

depends on the quantum extensions of the Racah co-

efficients (Wigner 6j-symbols). These coefficients are

known in the case of SU(2) [6, 7], and for symmet-

ric and antisymmetric representations of SU(N) [7, 14],

but remain largely unknown beyond those results (see

[5, 15–18] for some exceptions), especially for the cases

of non-trivial multiplicity.

Based on the TQFT approach, in this work we study

a matrix integral representation of the quantum Racah

coefficients, which naturally arises in the analysis of the

invariants of the figure-eight (41) knot. The main idea

behind our approach is to consider these invariants as

deformations of those of the product of a Hopf link and

its mirror image. This will lead to an expansion of the

invariants in terms of a basis of double matrix integrals.

We found that the coefficients of the expansion can be

thought as of a transform of the original Racah coeffi-

cients. To explain this idea we will rely on an explicit

realization of Witten’s proposal developed in [19] and

subsequent papers, e.g. see [20, 15, 8]. A nice refined

review of the method was recently given in [18].

In the TQFT approach the invariant (HOMFLY

polynomial of variables q and A ≡ qN ) of the Hopf link

221 is given by the formula

HR1,R2
(221) ∝

∑

Rs∈R1⊗R2

〈ψs | dimq Rs b
−2
1 |ψs 〉 ∝

∝
∑

Rs∈R1⊗R2

dimq Rs q
2C2(Rs), (1)
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where R1 and R2 are representations associated to the

components of the link, dimq R and C2(R) are the quan-

tum dimension and quadratic Casimir of the representa-

tion R. Fig. 1 illustrates the above formula in the TQFT

approach.

Fig. 1. The topological invariant of the Hopf link 221 can

be obtained by sandwiching the braid group element b
−2
1

between the initial and final state

The formula for the Hopf link does not involve the

Racah coefficients. This is also true for any torus knot of

the series (2m+ 1, 2) or torus links (2m, 2) with m > 0

in the four-strand case. The simplest non-trivial exam-

ple is the figure-eight knot 41 (Fig. 2). The invariant of

this knot can be computed as a double sum

HR(41) =
∑

Ri,Rj∈R⊗R̄

dimq(Ri)q
−2ci ×

×

{

R R̄ Ri

R R̄ Rj

}

dimq(Rj)q
2cj , (2)

where the expression in curly brackets denotes the

Racah matrix.

For example, in the fundamental representation of

SU(2) (2) gives the following Jones polynomial

J[1](41) =
1 + q2

q

(

q4 − q2 + 1− q−2 + q−4
)

, (3)

where we used the following expression for the Racah

coefficients, cf. [15],

{

R R̄ Ri

R R̄ Rj

}

=
1

dimq R

(

1 1

1 (1− [N ]2)−1

)

.

(4)

Here, we use the following convention for the quantum

version of a number

[n] =
qn − q−n

q − q−1
. (5)

Eq. (2) can be seen as a product of a Hopf link and

its mirror image twisted by the Racah matrix, inserted

in between. Pictorially we would like to illustrate the

deformation of the product of two Hopf links as an oper-

ation of cutting and gluing together the links as shown

in Fig. 2. The operation is valid if the representations

of the Hopf links coincide. An important difference be-

tween formulae (1) and (2) is in the multiplicity of sum-

mation, single in the first example and double in the

second. Now we would like to construct a similar gener-

alization for the matrix integral.

For the torus link (m,n) coloured with represen-

tations R1, . . . , RL of U(N) the HOMFLY polyno-

mial is given by the following matrix (eigenvalue) in-

tegral [9, 10] representation:

HR1,...,RL
(Lm,n) =

1

Zm/L,n/L

∫

du

N
∏

i=1

e−u2

iL
2/4ĝs ×

×

N
∏

i<j

4 sinh

(

ui − uj
2m/L

)

sinh

(

ui − uj
2n/L

) L
∏

i=1

SRi
(eu), (6)

where

ĝs = mngs, q = egs , (7)

SR(e
u) is the character of U(N), which is given by the

Schur polynomial and Zm,n is the normalization factor

given by the same integral with SR → 1. The integral is

taken over the eigenvalues ui, i = 1, . . . , N of the U(N)

matrices. The U(1) part can be factorized out and we

will be interested only in the SU(N) part, what amounts

to an appropriate renormalization of characters.

In the following we use the “correlator” notation

〈O(x)〉m,n,L =

∫

dx

N
∏

i=1

e−x2

iL
2/4ĝs ×

×

N
∏

i<j

4 sinh

(

xi − xj
2m/L

)

sinh

(

xi − xj
2n/L

)

O(x) (8)

and

〈〈O(x)〉〉m,n,L =
〈O(x)〉m,n,L

〈1〉m,n,L
, (9)
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Fig. 2. Construction of the figure-eight in the TQFT approach (left). Figure-eight knot obtained by a connect-sum of two

Hopf links (right)

for the normalized version. In particular, for the Hopf

link coloured with the spin k/2 representation of SU(2)

one finds the following Jones polynomial

Jk,k(2
2
1) = 〈〈Sk(e

x)2〉〉2,2,2 =

=
q

q2 − 1

∫ ∞

−∞

dx e−x2/8gs
(

e(k+1)x/2 − e−(k+1)x/2
)2

=

=

k2+2k
∑

j=0

q2j . (10)

Going from the Hopf link to the figure-eight knot we

propose the following generalization of the matrix inte-

gral formula, where the product of two matrix integrals

is twisted by some (non-local) kernel insertion:

1

〈 1 〉2,2,2〈 1 〉2,−2,2

∫

dx dy e−x2/4g1−y2/4g2 ×

×





N
∏

i<j

4 sinh

(

xi − xj
2

)

sinh

(

yi − yj
2

)





2

×

× SR(e
x)SR̄(e

x)GR(x, y)SR(e
y)SR̄(e

y) , (11)

where function GR(x, y) glues and twists two braids,

representing 221 links, in such a way that we get the 41
knot. Here we introduce two coupling constants g1 and

g2 to distinguish the link and its mirror. After integra-

tion one sets eg1 = q = e−g2 . If GR(x, y) = 1 we recover

the result for the product of two links given by (10).

There is a simple, mirror-symmetric (q → 1/q) basis

for the coloured Jones polynomials of the 41 knot. This

is given by double matrix integrals of the form

〈〈Sk(e
x)Sk(e

y)〉〉 =
1

〈 1 〉2,2,2〈 1 〉2,−2,2
×

×

∫

dx dy exp

(

−
x2

4g1
−

y2

4g2

)

Sk(e
x)Sk(e

y)×

×

[

4 sinh

(

x1 − x2
2

)

sinh

(

y1 − y2
2

)]2

. (12)

Here the “correlator” of the two characters is normalized

by two normalization factors of the 221 Hopf link and of

its mirror image. The integral yields

〈〈Sk(e
x)Sk(e

y)〉〉 = [k + 1]2 = q2k + 2q2k−2 + . . .+

+ kq2 + (k + 1) + kq−2 + . . .+ 2q2−2k + q−2k. (13)

This basis can be related to the standard monomial

basis using the Jones polynomial of 41 in the represen-

tation p/2 as an example. We have2)

dimq[p] Jp(41) = a0 +

n
∑

i=1

ai
(

q2i + q−2i
)

,

n = p(p+ 2) . (14)

Then the correlator, which reproduces this result is

2)With a slight abuse of notation we label [p] the spin-p/2 rep-

resentation of SU(2). Otherwise [·] stand for q-numbers.
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Fig. 3. Value of the coefficients bk as a function of k in representations [10], [20], [30] and [40]

〈〈 n
∑

k=0

bkSk(e
x)Sk(e

y)

〉〉

,

where bk = (A−1)kiai, (15)

and A is a non-degenerate (n+ 1)× (n+ 1) matrix

A =

















n+ 1 n n− 1 . . . 1

0 n n− 1 . . . 1

0 0 n− 1 . . . 1

. . .

0 0 0 . . . 1

















. (16)

It is interesting to note the following property of the

correlators, which immediately follows from the com-

parison of (13) and (10):

〈〈Sk(e
x)2Sk(e

y)2〉〉 = 〈〈Sk(k+2)(e
x)Sk(k+2)(e

y)〉〉. (17)

The lhs of this expression is the invariant of the product

of a link and its mirror image. The rhs is the highest or-

der term in expansion (15) of the Jones polynomial (14).

The above property shows us how the invariant of the

knot (14) can be understood as a deformation of the

formula for the product of two links. One can also no-

tice that the number of terms (p + 1)2 in the sum (14)

coincides with the number of terms in the sum (2).

Thus, the Jones polynomials can be found as an ex-

pansion

dimq[p]J[p](41) =

p(p+2)
∑

k=0

bk(p)[k + 1]2 (18)

with some integer coefficients bk, which depend on the

representation [p]:

bp2+2p = 1, bp2+2p−1 = −1,

bp2+2p−2 = −1, . . . (19)

Since the general formula for coloured Jones polyno-

mials of the figure-eight can be found in [3], this allows

us to find the coefficients bk in any representation of

SU(2). In particular, one can derive some recursive re-

lations for the coefficients [21].

As follows from (2) the coefficients bk satisfy the re-

summation formula involving the Racah coefficients

dimq[p]J[p](41) =

p(p+2)
∑

k=0

bk[k + 1]2 =

=

p
∑

i,j=0

[2i+ 1][2j + 1]q2i(i+1)−2j(j+1)αij(p), (20)
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where

αij(p) = dimq[p]

{

[p] [p] [2i]

[p] [p] [2j]

}

. (21)

Fig. 3 shows the distribution of the coefficients in the

expansion of dimq[p]Jp(41) for p = 10, 20, 30, 40. The

plots show an interesting pattern for the distributions

for higher representations. They also hint at another in-

teresting property of the coefficients bk(p),

∑

bk(p) =

{

0, if p is odd,

1, if p is even.
(22)

The generalization of formula (2) for the (2m)1 knot

series reads

HR(2m1) =
∑

Ri,Rj∈R⊗R̄

dimq(Ri)q
−2ci ×

×

{

R R̄ Ri

R R̄ Rj

}

dimq(Rj)q
(2m−2)cj . (23)

Apparently, in the general case the “mirror symmetry”

is broken and the invariants will be no longer symmetric

with respect to q → 1/q.

One can also try to present the invariants of the

knot from the 2m1 series as a deformation of the prod-

uct of 2 links, a (mirror image of a) Hopf link and

a (2m − 2)21 link. Indeed the generalized correlator

〈〈Sk(e
x)2Sk(e

y)2〉〉m gives the leading order contribution

to Jk(2m1). However, the property (17) does not hold

for 〈〈Sk(e
x)Sk(e

y)〉〉m. Correlators 〈〈Sk(e
x)Sk(e

y)〉〉m do

not form a basis for the invariants for general m. It

would be interesting to find the appropriate general-

ization of the m = 1 basis, which will be done else-

where [21].
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