
Pis’ma v ZhETF, vol. 101, iss. 2, pp. 124 – 130 c© 2015 January 25

Long-range spin imbalance in mesoscopic superconductors under a
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We develop a theory of spin relaxation in Zeeman-splitted superconducting films at low temperatures. A

new mechanism of spin relaxation, specific only for Zeeman-splitted superconductors is proposed. It can ex-

plain the extremely high spin relaxation lengths, experimentally observed in Zeeman-splitted superconductors,

and their strong growth with the magnetic field. In the framework of this mechanism the observed spin signal

is formed by the spin-independent nonequilibrium quasiparticle distribution weighted by the spin-split DOS.

We demonstrate that the relaxation length of such a spin signal is determined by the energy relaxation length

at energies of the order of the superconducting gap.
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Effective control of spin-polarized transport forms

a basis of spintronic applications. In particular, it is

very important to transmit spin signals over mesoscopic

length scales. Usually at low temperatures the spin re-

laxation length is limited by elastic spin-flip at magnetic

impurities or spin-orbit scattering processes. For exam-

ple, it was shown in transport experiments [1–3] that

for Al thin films in the normal state the spin relaxation

length λN is of the order of 400–500 nm. However, re-

cently is has been reported for superconducting Al films

that in the presence of a significant Zeeman splitting of

the quasiparticle density of states (DOS) the spin sig-

nal can spread over distances of several µm [2–4]. In

these experiments the superconducting spin relaxation

length exceeds considerably the superconducting coher-

ence length, the normal-state spin relaxation length and

the charge-imbalance length. It is also important that

the relaxation length grows with the applied magnetic

field. But a mechanism for such a long-distance spin re-

laxation is not understand yet.

In the present paper we develop a theory of spin

relaxation in Zeeman-splitted superconducting films at

low temperatures. It is known that in the absence of

the magnetic field (Zeeman splitting of the DOS) and

at low temperatures the main mechanisms of the spin

relaxation in superconductors are elastic spin flips by

magnetic impurities and by spin-orbit interaction [5–9].

Here, we show that it is unlikely that the experimentally

observed long-distance spin relaxation is provided by

1)e-mail: bobkova@issp.ac.ru

such elastic spin-flip processes. Instead we suggest a new

mechanism, which controls spin relaxation in Zeeman-

splitted superconductors.

It is generally believed that the length of a spin sig-

nal spread is controlled by the characteristic length of

any spin relaxation processes. We show that in the case

of Zeeman-splitted superconductor this is not necessary

so. The spin relaxation length can be much larger than

the length determined by fast elastic spin flip processes.

The role of these elastic processes is only to rapidly re-

lax the distribution function to the spin-independent

value. The observed spin signal is formed by the spin-

independent nonequilibrium quasiparticle distribution

weighted by the spin-split DOS. We demonstrate that

the relaxation length of such a spin signal is the en-

ergy relaxation length. This energy relaxation is pro-

vided by inelastic processes such as electron-electron

and electron-phonon scattering. At low temperatures

these inelastic processes are rather weak, so the cor-

responding spin relaxation lengths are large. Our the-

oretical estimates of the expected length scales for Al

agree well with the experimental data [2–4].

We show that the relaxation length for such a mech-

anism should grow with the magnetic field, as it is ob-

served. The main qualitative reason is the following.

It is well-known that the scattering rates of inelastic

processes are energy dependent at low temperatures:

the electron-electron scattering rate τ−1
e−e ∼ ε2 and the

electron-phonon scattering rate τ−1
e−ph ∼ ε3. The most

essential energies for the considered here spin imbalance

are of the order of the superconducting energy gap ∆.
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The superconducting gap is suppressed by the magnetic

field. This leads to the suppression of the characteristic

energy scale important for the relaxation. Consequently,

the characteristic scattering rate decreases and the re-

laxation length grows.

Now we proceed to the calculation. Following the

experiments [2–4] we consider the system depicted in

Fig. 1a. It consists of a thin superconducting film (S)

overlapped by the injector (I) and detector (D) elec-

trodes. A current is injected into the superconducting

film via I. This electrode can be normal or ferromag-

netic. The detector electrode is ferromagnetic. The mag-

netic field is applied in plane of the film and is par-

allel to the ferromagnetic wires. It is interesting that

the spin transport for misaligned magnetic field and in-

jected spins was also studied recently [10]. In our study

the quantization axis is chosen along the magnetic field.

Both the injector and the detector are coupled to the

film by tunnel contacts.

In this case it can be shown that the non-local elec-

tric current, measured at the detector is proportional to

PDS. Here PD is the detector polarization and S is the

local nonequilibrium spin accumulation in the film at

the detector point. Further, we focus on this nonequilib-

rium spin accumulation S. This quantity can be written

in terms of the Keldysh quasiclassical Green function as

S =
∞
∫

−∞

dεTr
[

τ3σ3

(

ǧK − ǧK

eq

)]

/16, where τi and σi are

Pauli matrices in the particle-hole and spin spaces, Re-

spectively, ǧK is the Keldysh component (4× 4 matrix)

of the quasiclassical Green’s function ǧ =

(

ǧR ǧK

0 ǧA

)

,

ǧR(A) are retarded and advanced Green’s functions. ǧK

eq

means the value of the Keldysh component in equilib-

rium. We assume the superconductor to be in the dif-

fusive limit, so the matrix ǧ obeys the Usadel equation

[11, 12]

D∂̂y(ǧ∂̂y ǧ) + i
[

Λ̌− Σ̌so − Σ̌mi − Σ̌in, ǧ
]

= 0. (1)

Here Λ̌ = ετ3 − hσ3τ3 − ∆iτ2, ε is the quasiparticle

energy, h = µBH is the Zeeman field, ∆ is the order

parameter in the film, D is the diffusion constant. ∂̂y
is a matrix in particle-hole space, accounting for the

orbital suppression of superconductivity by the mag-

netic field. For a general matrix Ǧ in particle-hole space

∂̂yǦ = ∂yǦ − (2ie/c)(Hx + A0)
[

P11ǦP22 − P22ǦP11

]

,

where P11(22) = (1± τ3)/2 and x is the coordinate nor-

mal to the film. Eq. (1) should be supplemented by the

normalization condition ǧ2 = 1.

The terms Σ̌so = τ−1
so (σǧσ) and Σ̌mi =

= τ−1
mi (στ3ǧστ3) in Eq. (1) describe elastic spin

relaxation processes of spin-orbit scattering and

exchange interaction with magnetic impurities, respec-

tively. The last term Σ̌in describes inelastic processes

of energy relaxation.

We assume that the transparencies of the injector

and detector interfaces are small, so that up to the lead-

ing (zero) order in transparency the retarded, advanced

Green’s functions and the order parameter take their

bulk values in the presence of the magnetic field. The

Green’s functions can be represented in the form ǧR =

= gR0 τ3 + gRt σ3τ3 + fR
0 iτ2 + fR

t σ3iτ2. It is convenient to

use the following θ-parametrization, which satisfies the

normalization condition: gR0,t = (cosh θ+ ± cosh θ−)/2

and fR
0,t = (sinh θ+ ± sinh θ−)/2. The advanced Green’s

functions can be found as ǧA = −ǧR∗. Then one can ob-

tain from Eq. (1) that θ± obey the following equation:

(ε∓ h) sinh θ± +∆cosh θ± +

+Di
e2

6c2
H2d2 cosh θ± sinh θ±±2iτ−1

so sinh(θ+ − θ−)+

+ 2iτ−1
sf [cosh θ± sinh θ± + sinh(θ+ + θ−)] = 0. (2)

Here the third term describes the orbital depairing

of superconductivity. Usually this orbital deparing can

be disregarded for thin films in parallel magnetic field.

However, it can be estimated that for magnetic fields of

the order of 1–2 T, which are applied in experiment, the

orbital depairing can even exceed the other depairing

factors (spin-orbit and magnetic impurity scattering).

So, it cannot be neglected in Eq. (2). In order to obtain

Eq. (2) we integrate the retarded part of Eq. (1) over the

width d of the film along the x-direction. ∆ is calculated

self-consistently.

The term Σ̌in, describing inelastic energy relaxation,

in principle, also enters Eq. (2) as another depairing fac-

tor, but it is neglected because at low temperature it

is small as compared to other depairing factors. It is

important only for the calculation of the distribution

function.

The normalization condition allows to write the

Keldysh component as ǧK = ǧRϕ̌− ϕ̌ǧA, where ϕ̌ is the

distribution function with the following general struc-

ture in particle-hole and spin spaces: ϕ̌ = (1/2)(ϕ0
+ +

+ ϕt
+σz + ϕ0

−τz + ϕt
−τzσz). Physically the distribution

function ϕ− is responsible for the charge imbalance and

ϕ+ for the spin imbalance in the system. The com-

ponents ϕ0
± describe the spin-independent part of the

quasiparticle distribution, while ϕt
± accounts for its spin

polarization. In the equilibrium ϕ0
+ = 2 tanh(ε/2T ) and

the other components of ϕ̌ are zero. Via the distribution
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Fig. 1. (Color online) (a) – Sketch of the system under consideration. (b), (c) – Nonlocal conductance as a function of V for

different magnetic fields. Panel (b) corresponds to elastic mechanisms of spin relaxation, L = 1.0lNs . (c) – gnl for the energy

relaxation mechanism (see text), L = 12.5lNs . (d) – gnl as a function of V for different L for the energy relaxation mechanism.

h = 0.20∆0. For panels (b)–(d) PI = 0.2. (e) – gnl as a function of V for the normal injector (PI = 0) and different L;

h = 0.20∆0. For panels (b)–(e) T = 0.02∆0. (f) – gnl as a function of V for the normal injector and different temperatures;

h = 0.20∆0, L = 12.5lNs . For all the panels τ−1
so = τ−1

mi
= 0.015∆0

function the nonequilibrium spin accumulation S can be

written as follows

S =
1

4

∞
∫

−∞

dε
[

Re[gRt ]
(

ϕ0
+ − 2 tanh

ε

2T

)

+ Re[gR0 ]ϕ
t
+

]

.

(3)

It is worth to note here that for Zeeman-splitted super-

conductor the triplet part of the normal Green’s func-

tion gRt is nonzero, while it vanishes for h = 0. Due to

this fact the nonequilibrium spin accumulation S can be

nonzero in the Zeeman-splitted superconductor even for

the case of spin-independent quasiparticle distribution,

that is for ϕt
+ = 0. In principle, for a Zeeman-splitted su-

perconductor there is an equilibrium spin accumulation

near the Fermi energy Seq = 1
2

∞
∫

−∞

dεRe[gRt ] tanh(ε/2T ).

But we do not consider this quantity here because it

does not contribute to the measured signal. It is interest-

ing that the Zeeman splitting not only allows to get the
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spin signal on the basis of the spin-independent quasi-

particle distribution, but it also provides a possibility

to have highly spin-polarized electric current in normal

metal/superconductor junctions [13].

The equations for the distribution functions ϕ0,t
+ , en-

tering Eq. (3), can be derived from Eq. (1) and take the

form

D(κ1∂
2
yϕ

0
+ + κ2∂

2
yϕ

t
+)−

ϕ0
+ − 2 tanh(ε/2T )

τε
= 0, (4)

D(κ2∂
2
yϕ

0
+ + κ1∂

2
yϕ

t
+)−Kϕt

+ −
ϕt
+

τε
= 0. (5)

Here κ1 = 1 + |gR0 |
2 + |gRt |

2 − |fR
0 |2 − |fR

t |2 and

κ2 = 2Re[gR0 g
R∗
t − fR

0 fR∗
t ] account for the renormal-

ization of the diffusion constant by superconductivity,

K = Kso + Kmi is responsible for the spin relaxation

by elastic processes: spin-orbit scattering and spin-flip

scattering by magnetic impurities, and

Kso(mi) = 8τ−1
so(mi)[Re(gR0

2
∓ fR

0
2
) + |gR0 |

2 ∓ |fR
0 |2 −

− Re(gRt
2
∓ fR

t

2
)− (|gRt |

2 ∓ |fR
t |2)]. (6)

The last terms in Eqs. (4)–(5) describe energy relax-

ation processes. We consider these processes in relax-

ation time approximation. The renormalization of the

energy relaxation time τε by superconductivity is ne-

glected. It has been reported in the literature [14, 15]

that the main processes providing energy relaxation in

Al at low temperatures are electron-electron scatter-

ing. So, we assume that τ−1
ε ∼ γe−e(Tc)ε

2/T 2
c , where

γe−e(Tc) ∼ 108 c−1 for Al.

We assume that the elastic spin-flip processes

are much faster than the energy relaxation, that is

τ−1
ε /K ≪ 1. This assumption is in good agreement with

the experimental situation [2, 3]. Under this condition

the solution of Eqs. (4), (5) up to the leading order in

the parameter τ−1
ε /K takes the form

(

δϕ0
+

ϕt
+

)

=

= α

(

−κ2

κ1

1

)

e−λsy + β

(

1
τ−1

ε
κ2

Kκ1

)

e−λεy, (7)

where δϕ0
+ = ϕ0

+ − 2 tanh ε
2T , λ2

s = κ1K/D(κ2
1 − κ2

2),

and λ2
ε = τ−1

ε /Dκ1. The first term in Eq. (7) describes

fast spin relaxation of the distribution function due to

elastic spin-flip processes and the second corresponds to

the slow energy relaxation of the approximately spin-

independent part.

Constants α and β should be found from the ap-

propriate boundary conditions for Eq. (1) at the in-

jector/superconductor interface. These boundary condi-

tions are to be obtained from the general Kupriyanov–

Lukichev boundary conditions [16], generalized for spin-

filtering interfaces [17]. In the considered case up to the

leading order in the junction transparency we can ne-

glect the superconducting proximity effect in the injec-

tor electrode. In this case the spectral function in it has

a trivial spin and particle-hole structure: ǧR,A
I = ±τ3.

Then the boundary conditions take the form

ǧ∂̂y ǧ = −
Ǧ

2σs

[ǧ, ǧI ] . (8)

If the injector is biased with respect to the supercon-

ductor by the voltage V , the Keldysh Green’s func-

tion there takes the form ǧK

I
= τ3(ϕ

0
I+ + ϕ0

I−
τ3), where

ϕ0
I±

= tanh[(ε−V )/2T ]± tanh[(ε+V )/2T ]. The tunnel

interface between the injector and the superconductor

is assumed to be spin-polarized with the conductance

matrix Ǧ = G0 + Gtτ3σ3. In the tunnel limit we con-

sider the injected current polarization is mainly deter-

mined by the spin polarization of the tunnel conduc-

tance PI = Gt/G0. We take PI = 0.2 according to the

experimental data [2]. σs is the conductivity of the su-

perconductor.

Boundary conditions for the distribution functions

at y = 0 are to be obtained making use of the Keldysh

part of Eq. (8). Up to the leading (first) order in trans-

parency of the I/S interface they take the form:

κ1∂yϕ
0
+ + κ2∂yϕ

t
+ +

+ 2
G0

σs

[RegR0 ]
(

ϕ0
I+ − 2 tanh

ε

2T

)

+

+ 2
Gt

σs

[RegRt ]ϕ
0
I− = 0, (9)

κ1∂yϕ
t
+ + κ2∂yϕ

0
+ +

+ 2
G0

σs

[RegRt ]
(

ϕ0
I+ − 2 tanh

ε

2T

)

+

+ 2
Gt

σs

[RegR0 ]ϕ
0
I− = 0. (10)

It is worth to note here that, while the distribution func-

tions ϕ+ and ϕ− obey the independent kinetic equa-

tions, they are coupled by the boundary conditions, if

the interface barrier is spin-polarized, as it is seen from

Eqs. (9), (10). It is straightforward to find the constants

α and β from Eqs. (9), (10). Up to the leading order in

τ−1
ε /K:

β =
2

σsκ1λε

{

G0[RegR0 ]
(

ϕ0
I+ − 2 tanh

ε

2T

)

+

+Gt[RegRt ]ϕ
0
I−

}

, (11)
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α =
2κ1

σs(κ2
1 − κ2

2)λs

{

G0

(

[RegRt ]−
κ2

κ1
[RegR0 ]

)

×

×
(

ϕ0
I+ − 2 tanh

ε

2T

)

+

+ Gt

(

[RegR0 ]−
κ2

κ1
[RegRt ]

)

ϕ0
I−

}

. (12)

Further, having at hand the spectral functions gR0,t,

obtained from Eq. (2) and the distribution functions,

determined by Eq. (7), we can calculate the nonequi-

librium spin accumulation S from Eq. (3).

Now we turn to the discussion of the spin accu-

mulation. At first we forget about slow energy relax-

ation and study the elastic relaxation processes. We

choose τ−1
so + τ−1

mi = 0.03∆0, where ∆0 ≡ ∆(h = 0).

Then the normal state spin relaxation length lNs =

= λN
s

−1
=
√

D/8(τ−1
so + τ−1

mi ) corresponds to the exper-

imental data for thin Al films [1–3]. For the particular

results presented here we also assume equal strengths of

the spin-orbit and magnetic scatterings τ−1
so = τ−1

mi , but

it does not influence qualitatively the results.

In Fig. 1b we demonstrate the nonlocal conductance

calculated as gnl = dS/dV . Different curves correspond

to different applied magnetic fields. It is seen that the

nonlocal conductance curves do not resemble the exper-

imental results [2, 3]. This takes place at any distance

L from the injector. The particular results, presented in

Fig. 1b, are calculated for L = 1.0lNs . The main qualita-

tive difference from the experimental results is that for

the ferromagnetic injector the elastic relaxation gives as

a symmetric in V , so as anti-symmetric in V compo-

nents of the nonlocal conductance. In the experimental

data the symmetric part is very small. For our calcu-

lated curves it is the dominating term. As it is seen

from Eq. (12), it is always the case for a ferromagnetic

injector, at least for the considered case of the tunnel

junctions. In this case the nonlocal conductance can be

fully antisymmetric in V only for a normal injector.

The nonlocal spin signal S decays exponentially as

a function of distance L from the injector point. In the

insert to Fig. 2b its decay length ls is plotted as a func-

tion of the magnetic field. Generally speaking, the decay

length depends on the particular value of the voltage V

(quantitatively, not qualitatively). Our results are pre-

sented for V = 2.5∆0. We take V to be considerably

larger than ∆ in accordance with the method used in

[2] to estimate the value of the relaxation length. We can

see from the insert to Fig. 2b that ls is a nonmonotonous

function of the field. After a slight initial decrease it

grows at the large enough field, but this growth is too

weak to account for the experimental data. More im-

portant thing is that the reasonable values of elastic

scattering strength cannot be responsible for the large

relaxation lengths ∼ several µm, observed in [2–4]. The

renormalization due to superconductivity only reduces

the relaxation length with respect to its normal state

value and ls → lNs at large magnetic fields, when super-

conductivity is practically suppressed.

So, on the basis of our analysis we can make the

following conclusion. It is unlikely that the elastic re-

laxation processes is the mechanism of the slow spin

relaxation, observed in [2–4]. The main arguments are:

(i) the shape of the nonlocal conductance does not re-

semble the experimental one for the ferromagnetic injec-

tor; (ii) the calculated values of ls are much smaller than

the experimentally observed; (iii) the calculated growth

with the applied field is too weak and ls is limited by

lNs . Further we propose another mechanism of spin re-

laxation, which removes the most part of these disagree-

ments. This can work only for a Zeeman-splitted super-

conductor, where the spin accumulation can be due to

the ordinary spin-independent nonequilibrium quasipar-

ticle distribution weighted by the spin-split DOS.

Now let us include the weak energy relaxation pro-

cesses in our study. From now we consider L ≫ ls, where

the fast-decaying spin-dependent part of the distribu-

tion function is negligible. Then the distribution func-

tion is nonequilibrium, but spin-independent. Accord-

ing to Eq. (3), such a spin-independent distrubution can

give the nonzero S due to the Zeeman-splitted supercon-

ducting DOS. Figs. 1c–f represent the nonlocal conduc-

tance calculated for L = 12.5lNs , where the distribution

function is already practically spin-independent. Please

note that we cannot say that “the elastic spin relaxation

is not important here”. It is these elastic processes that

provide the fast relaxation of the distribution function

to the spin-independent form. In the absence of such fast

relaxation processes the distribution function would be

spin-dependent in the Zeeman splitted superconductor

due to energy relaxation, even for the case of normal

injector.

The results, demonstrated in Figs. 1c–f, are in good

agreement with the experimental results. Figs. 1c, d rep-

resent the results for the ferromagnetic injector. Panel

c demonstrates curves for different H at fixed L and

panel d corresponds to different L at fixed H . The

plots are mainly anti-symmetric in V , but the posi-

tive peak is slightly higher than the negative one. The

peaks are fully anti-symmetric for a normal injector (see

Figs. 1e, f). The same feature is also observed experi-

mentally [2, 4]. The temperature evolution of the con-

ductance curves for the normal injector is plotted in

Fig. 1f and is also in good agreement with the experi-

mental findings.
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Fig. 2. (a) – Peak area S(V = −2∆0) as a function of H for different L. (b) – Spin relaxation length lε as a function of H .

The inset represents the dependence of ls on H . PI = 0.2, T = 0.02∆0

In Fig. 2a the positive peak area (peak at V < 0)

is plotted as a function of H for different L. The spin

signal S and, consequently, this peak area decay expo-

nentially as a function of L. The decaying length lε is

plotted in Fig. 2. It is seen that this inelastic spin relax-

ation length lε shows a strong increase as a function of

the magnetic field. It is worth to note that already at the

smallest fields the value of lε is considerably higher than

the length of elastic relaxation. The physical reason for

large increase of lε with the field is twofold.

(i) The energy-resolved spin relaxation length lε(ε)

is strongly suppressed for subgap energies. This sup-

pression is reduced upon increase of the applied field,

what results in some growth of lε with H . However, this

growth is not very essential, because the contribution of

subgap energies to the overall signal is weighted by the

subgap DOS. The subgap DOS is small, but nonzero

due to the influence of the depairing factors, such as

magnetic impurities, spin-orbit scattering and the or-

bital deparing.

(ii) The second and, in fact, the main reason of lε
growth with the field is the suppression of the super-

conducting order parameter ∆. The point is that the

energies of the order of ∆ make the most important con-

tribution to the signal. The electron-electron scattering

rate τ−1
ε ∝ ε2. Consequently, the effective scattering

rate diminishes with the order parameter suppression.

In the framework of this mechanism the upper limit for

the spin relaxation length is the normal state energy

relaxation length at a given temperature. If the energy

relaxation is provided by the electron-phonon scattering

τ−1
ε ∝ ε3, the qualitative picture is the same, but the

more sharp increase of the relaxation length with the

field is observed.

For the considered model the main factor, which sup-

presses ∆ upon rising the field is the orbital effect of

the field. Although the film is thin, it cannot be disre-

garded here. We have estimated the corresponding de-

paring factor in Eq. (2) as D(e2/6c2)H2d2 = 1.4h2/∆0.

This estimate agrees well with the value of the orbital

deparing obtained in [18] by fitting the local conduc-

tance data. In such a case the critical field Hc is mainly

determined by the orbital deparing, and the contribu-

tion of the Zeeman deparing is rather small. The main

role of the Zeeman term is to provide the splitted DOS.

Our calculated dependence lε on the applied field

manifests a strong growth when the field increases. This

is in qualitative agreement with the experimental data.

However, the particular shape of the calculated lε(H)

does not agrees quantitatively with the measured ones

[2, 4]. One of possible reasons of such a discrepancy is an

additional suppression of the superconducting order pa-

rameter in the vicinity of the ferromagnetic electrodes,

which we do not take into account in our considera-

tion. It results in inhomogeneities of the order param-

eter in the system. Then the space averaged “effective”

order parameter should be suppressed by the field more

smoothly than the homogeneous ∆, assumed in our

model. In its turn, it should provide more quantitative

agreement with the experimental data. In particular,

near the critical field Hc the main energies, contribut-

ing to the relaxation, are determined by the width of

the smeared coherence peak instead of ∆. This effective

width grows with the field, what can lead to a saturation

or a decline of the relaxation length near Hc. However,

a quantitative study of such an inhomogeneous problem

is beyond the scope of this work.

In conclusion, a theory of spin relaxation in Zeeman-

splitted superconducting films at low temperatures

is developed. It is suggested that the main mech-

anism, which determines the spin relaxation length

in the Zeeman-splitted superconductors is the spin-

9 Письма в ЖЭТФ том 101 вып. 1 – 2 2015



130 I. V. Bobkova, A. M. Bobkov

independent energy relaxation. The role of faster elastic

processes is only to relax the distribution function to the

spin-independent form. In this framework the extremely

high spin relaxation lengths, experimentally observed

in Zeeman-splitted superconductors, and their strong

growth with the magnetic field have natural explana-

tions. In principle, the relaxation length can grow up

to the normal state energy relaxation length for a given

temperature.
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