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On formation of equation of state of evolving quantum field
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Stylized model of evolution of matter created in ultrarelativistic heavy ion collisions is considered. Sys-

tematic procedure of computing quantum corrections in the framework of Keldysh formalism is formulated.

Analytical expressions for formation of equations of state taking into account leading quantum corrections are

worked out, complete description of subleading corrections and analytical expressions for some of them are

presented.
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Introduction. Quantitative understanding of

physics of the early stages of ultrarelativistic heavy ion

collisions remains, despite strong efforts, an outstand-

ingly difficult problem. One of the most important

issues is a possibility of applying hydrodynamic de-

scription that fits many observable quantities, see e.g.

the recent reviews [1] and references therein, [2, 3]. For

hydro description to be valid the system should become

sufficiently equilibrated. In particular, a one-to-one

relation between energy and pressure providing a well

defined equation of state is required. The problem

of formation of equation of state was analyzed, at an

example of scalar field theory, in [4–6]. The analysis was

based on the fact that summation of leading quantum

corrections can be cast in the form of integration over

initial conditions for classical trajectories with the

weight given by the Wigner function, see [7] and, in

different contexts, [8–11].

The aim of this letter is to introduce a systematic

formalism based on Keldysh technique [12] allowing to

compute subleading corrections to temporal evolution

of observables. In particular, using the model of [4], we

shall provide an analytical description of pressure re-

laxation in the leading approximation in quantum cor-

rections as well as explicit equations for next-to-leading

order corrections.

General formalism. Let us consider temporal evo-

lution of the observable F (ϕ̂) in the time interval [t0, t1].

The expectation value of F (ϕ̂) at the moment t1 reads

1)e-mail: aradovsk@cern.ch

〈F (ϕ̂)〉t1 = tr[F (ϕ̂)ρ̂(t1)] =

∫

dξ

∫

dξ1

∫

dξ2F (ξ)×

×〈ξ|U(t1, t0)|ξ1〉〈ξ1|ρ̂(t0)|ξ2〉〈ξ2|Û(t0, t1)|ξ〉, (1)

where evolution of the density matrix ρ̂(t) is governed

by the evolution operator Û(t, t0)

ρ̂(t) = Û(t, t0)ρ̂(t0)Û(t0, t), (2)

and we have defined ϕ̂|ξ〉 = ξ|ξ〉.
The matrix elements of the evolution operator in

Eq. (1) for forward and backward time evolution are con-

veniently written in terms of the fields ηB,F as

〈ξ|Û(t1, t0)|ξ1〉 =
ηF (t1)=ξ
∫

ηF (t0)=ξ1

DηF (t)e
iS[ηF ] (3)

and

〈ξ2|Û(t0, t1)|ξ〉 =
ηB(t1)=ξ
∫

ηB(t0)=ξ2

DηB(t)e
−iS[ηB ], (4)

where

S[η] =

t1
∫

t0

L(η, ∂tη)dt′. (5)

Using Eqs. (3), (4) one can rewrite (1) in the following

form:

〈F (ϕ̂)〉t1 =

∫

dξ

∫

dξ1

∫

dξ2〈ξ1|ρ̂(t0)|ξ2〉 ×

× F (ξ)

ηF (t1)=ξ
∫

ηF (t0)=ξ1

DηF

ηB(t1)=ξ
∫

ηB(t0)=ξ2

DηB eiSK [η], (6)
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where SK [η] ≡ S[ηF ] − S[ηB] is the so-called Keldysh

action and the integration goes along the Keldysh con-

tour, see Fig. 1a.

Fig. 1. Keldysh contour (a), extended Keldysh contour (b)

In actual calculations it is convenient to rewrite (6)

by extending temporal integration to infinity by intro-

ducing an extended Keldysh contour, see Fig. 1b. The

convenience stems from the fact that all the dependence

on t1 now resides only in F so that

〈F (ϕ̂)〉t1 =

∫

dχ1

∫

dξ1

∫

dξ2〈ξ1|ρ̂(t0)|ξ2〉 ×

×
ηF (∞)=χ1
∫

ηF (t0)=ξ1

DηF

ηB(∞)=χ1
∫

ηB(t0)=ξ2

DηBF

[

ηF (t1) + ηB(t1)

2

]

×

× eiSK [η]. (7)

Let us now introduce new fields φc and φq:

φc =
ηF + ηB

2
, φq = ηF − ηB. (8)

The corresponding boundary conditions read

φc(t0) =
ξ1 + ξ2

2
, φc(∞) = χ1, (9)

φq(t0) = ξ1 − ξ2, φq(∞) = 0. (10)

Let us consider the scalar field theory with the la-

grangian

L =
1

2
φ̇2 − λ

4!
φ4 + Jφ. (11)

In terms of the new fields the action reads

SK [φc, φq] =

∞
∫

t0

dt

[

φ̇cφ̇q −
λ

4!
φcφ

3
q −

λ

6
φ3
cφq + Jφq

]

=

= φ̇c(t0)(ξ1 − ξ2)−
∞
∫

t0

dt

(

φqA[φc] +
λ

4!
φcφ

3
q

)

, (12)

where

A[φc] = φ̈c +
λ

6
φ3
c − J. (13)

We see that A[φc] = 0 corresponds to projecting onto

the tree-level equation of motion for the lagrangian

Eq. (11).

The systematic procedure we employ is expansion

in φq in (12) around its saddle-point value. This expan-

sion is, in fact, a quasiclassical one. This can be seen

by restoring ~ in the action and replacing φq → ~φq so

the only remaining dependence on ~ is in φ3
q which is

proportional to ~
2 and

e−i~2 λ
4!φcφ

3
q ≈ 1− i~2

λ

4!
φcφ

3
q +O(~4φ6

q)

and is built on top of the solution of the tree-level equa-

tions of motion φ̈0
c +

λ
6 (φ

0
c)

3 = 0. Explicitly [4]:

ϕ0
c(t) = φmaxcn

[

1

2
;

√

λ

6
φmax(t− t0) + C

]

, (14)

where cn is the Jacobi elliptic function. In what follows,

in agreement with, we shall denote by LO the leading

order contribution in φq, etc. (note the difference with

notations in [4, 5]).

LO approximation: analytical solution. In the

LO approximation we neglect the φ3
q term in the

Keldysh action. Integrating over φq in (7) we get

〈F (ϕ̂)〉LO

t1
=

∫

dχ1

∫

dξ1

∫

dξ2〈ξ1|ρ̂(t0)|ξ2〉 ×

×
φc(∞)=χ1
∫

φc(t0)=
ξ1+ξ2

2

Dφc F [φc(t1)]×

×
∫

dp̃

2π
eip̃(ξ1−ξ2)δ[p̃− φ̇c(t0)] δ(A[φc]), (15)

where we have introduced a new delta function to de-

fine “initial velocity” φ̇c(t0) = p̃. The initial value of φ0
c is

simply φ0
c(t0) =

ξ1+ξ2
2 ≡ α. Denoting the corresponding

classical solution by φ0
c we have F [φc(t1)] = F [φ0

c(t1)].

Denoting ξ1 − ξ2 = β and integrating over φc we get

〈F (ϕ̂)〉LO

t1
=

∫

dp̃

2π

∫

dαfW(α, p̃, t0)F [φ0
c(t1)], (16)

fW(α, p̃, t0) =

∫

dβ〈α +
β

2
|ρ̂(t0)|α − β

2
〉eip̃β ,

where fW(α, p̃, t0) is the Wigner function. We see that

the LO approximation in φq corresponds to averaging

over initial conditions for classical trajectory with the

weight given by the corresponding Wigner function. Ex-

pression (16) was earlier derived by different methods in

[7, 4], see also [8] and [10, 11].

For spatially inhomogeneous fields (16) is replaced

by
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〈F (ϕ̂)〉LO

t1
=

=

∫

Dp̃(x)

∫

Dα(x)fW[α(x), p̃(x), t0]F [φ0
c(t1,x)], (17)

where Dφ(x) means the integration over 4-dimensional

functions and symbol Dφ(x) – over 3-dimensional ones

and

�φ0
c +

λ

6
(φ0

c)
3 = 0, φ0

c(t0,x) = α(x), φ̇0
c(t0,x) = p̃(x).

(18)

Let us now consider the evolution of the energy-

momentum tensor

T µν = ∂µϕ∂νϕ− gµν
(

1

2
∂σϕ∂

σϕ− λ

24
ϕ4

)

. (19)

Of special interest here is dynamical interrelation be-

tween energy and pressure and possibility of reaching

the “hydrodynamic” regime ε = 3p. In the case under

consideration (homogeneous field) at the tree level

ε0 =
ϕ̇2

2
+

λϕ4

24
, p0 =

ϕ̇2

2
− λϕ4

24
, (20)

where ϕ = ϕ0 is the solution of the EoM Eq. (14). The

resulting dynamics of energy and pressure [4] is shown in

Fig. 2 from which one can see that there is no one-to-one

Fig. 2. Evolution of energy and pressure in the tree level

approximation. The parameter values are φmax = 10,

λ = 0.5, C = 0

relation between energy and pressure in this approxima-

tion.

Let us now turn to of energy and pressure at the LO

level. In Ref. [4] it was shown by numerical computation

that averaging over initial conditions in (16) leads, af-

ter some transient period, to formation of well-defined

equation of state. In this section we describe an analyti-

cal calculation supporting this conclusion. Following [4],

let us use a Gaussian ansatz for the Wigner function

fW(α, p, 0) =
1

α0p0π
e
−

(α−A)2

α2
0

−
p2

p20 , (21)

where A is the initial amplitude of the field and α0 and

p0 are normalization constants. Let us make a change

of variables (α, p̃) → (φmax, C) (see (14), (16)):

∫

dp̃

2π

∫

dα →
∫

|J | dφmax dC, (22)

|J(φmax)| =
√

λ

6
φ2
max. (23)

In new variables the Wigner function reads

fW(φmax, C, 0) =
1

α0p0π
e
−
[φmaxcn( 1

2
;C)−A]2

α2
0 × (24)

×e
−

λ
6

φ4
maxsn( 1

2
;C)

2
dn( 1

2
;C)

2

p2
0 .

Analytical integration over φmax and C is possible in

the saddle point approximation, where

fW(φmax, C, 0) ≈
1

α0p0π
e
−

(φmax−A)2

α2
0

−
C2A4λ

6p2
0 (25)

valid for α0 ≪ A and p0 ≪ A2
√

λ/6. Introducing a

Fourier transform

cn

(

1

2
;

√

λ

6
φmaxt+ C

)

=

∞
∑

k=−∞

uke
2πik
T

(√
λ
6 φmaxt+C

)

,

(26)

um =
1

T

T
∫

0

cn

(

1

2
; t

)

e−imt 2π
T dt,

where T = 4K(1/2) (with K(1/2) – the complete el-

liptic integral of the first kind), we obtain the following

general equation relating energy and pressure:

pLO = εLO

{

−8

(

2π

T

)2 ∞
∑

k=−∞

∞
∑

l=0

k l ukule
−

6π2p20
λA4T2 (k+l)2×

× e−
α2
0π2λ

6T2 (k+l)2t2 cos

[

2πA(k + l)

T

√

λ

6
t

]

− 1

}

, (27)

where εLO = λA2/24.

Let us consider the large time limit t → ∞. The

resulting expressions are conveniently written using the

sum

I(q) = −
(

2π

T

)2 ∞
∑

k=−∞

k(q − k)ukuq−k =

=
1

T

T
∫

0

[

dcn
(

1
2 ; t
)

dt

]2

e−
2πi
T

qt, (28)
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where q is an integer number. Using the properties

of the coefficients uk in (26) it is easy to prove that

I(q) = I(−q). The leading asymptotic at t → ∞ comes

from the term with q = 0. The corresponding sum can

be calculated analytically, I(0) = 1/3, so that

pLO(t → ∞) = εLO[4I(0)− 1] =
εLO

3
. (29)

We see that indeed in the limit t → ∞ we recover the

ultrarelativistic equation of state ε = 3p. The leading

correction to (29) comes form the term with q = ±2.

Explicitly:

pLO(t → ∞) = εLO

[

1

3
+

+ 8I(2)e−
24π2p20
λA4T2 e−

2α2
0π2λ

3T2 t2 cos

(

4πA

T

√

λ

6
t

)

+ ...

]

, (30)

where I(2) ≈ −0.12. From (30) we see that “thermaliza-

tion time” tth can be estimated as

tth ∼
√

3

2

T

πα0

√
λ
. (31)

In Fig. 3 we compare numerical results for pLO and εLO

Fig. 3. Pressure relaxation: comparison of numerical re-

sult an analytical expression (27) with terms up to q = 6

taken into account. The parameter values are p0 = 1.5
√
2,

α0 = 1/p0, A = 10, λ = 0.9

with analytical expression (27) in which terms up to

q = 6 were retained (I(4) ≈ −0.04, I(6) ≈ −0.006). We

see that agreement between numerical and analytical

results is very good.

NLO corrections. Let us now consider NLO cor-

rections. Their importance is not only in a possibility

of obtaining more accurate expressions for the above-

considered observables but, importantly, in opening the

way for calculation of various correlation functions de-

scribing, in particular, transport properties of the sys-

tem. Technically we should return to Eq. (12) and ex-

pand φ3
q term in the action:

e
−i λ

4!

∞
∫

t0

dt′φcφ
3
q

≈ 1 − iλ

4!

∞
∫

t0

dt′φc(t
′)φ3

q(t
′) + O(φ6

q),

(32)

Using procedure described above and relations

δ

δJ(t)
eiSK [φc,φq] = iφq(t)e

iSK [φc,φq ] (33)

and
δφ0

c(t1)

δJ(t′)
= 0 if t′ ≥ t1, (34)

which follows from causality, one can obtain for NLO

correction

〈F (ϕ̂)〉NLO

t1
=

∫

dp̃

2π

∫

dα fW(α, p̃, t0)×

×



F [φ0
c(t1)] +

λ

4!

t1
∫

t0

dt′φ0
c(t

′)
δ3F [φ0

c(t1)]

δJ3(t′)

∣

∣

∣

∣

∣

∣

J=0



 . (35)

For simplicity let us denote solution of the classical EoM

φ0
c as φ and variations of this solution over source as:

δφ(t1)

δJ(t′)
= Φ1(t1, t

′),
δ2φ(t1)

δJ2(t′)
= Φ2(t1, t

′), (36)

δ3φ(t1)

δJ3(t′)
= Φ3(t1, t

′). (37)

Then

δ3F [φ(t1)]

δJ3(t′)
=

=
dF

dφ
Φ3(t1, t

′) + 3
d2F

dφ2
Φ2(t1, t

′)Φ1(t1, t
′) +

+
d3F

dφ3
Φ1(t1, t

′)3. (38)

We can find variations of the field φ with help of equa-

tion of motion as

δ3

δJ3(t′)

(

φ̈+
λ

6
φ3 − J

)

t1

= 0. (39)

In such a way we obtain the set of the differential equa-

tions on the variations:

L̂t1Φ1(t1, t
′) = δ(t1 − t′), (40)

L̂t1Φ2(t1, t
′) = −λφ(t1)Φ

2
1(t1, t

′),

L̂t1Φ3(t1, t
′) = −λΦ3

1(t1, t
′)− 3λφ(t1)Φ1(t1, t

′)Φ2(t1, t
′),

L̂t = ∂2
t +

λ

2
φ2(t).
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As we can solve them for explicit EoM we derive the

answer for NLO correction Eq. (35).

In similar way we can obtain expressions for 2-point

correlation functions in the Keldysh formalism:

〈φc(t1)φc(t2)〉 =
∫

dp̃

2π

∫

dαfW(α, p̃, t0)φ
0
c(t1)φ

0
c(t2),

〈φc(t1)φq(t2)〉 = −i

∫

dp̃

2π

∫

dαfW(α, p̃, t0)
δφ0

c(t1)

δJ(t2)
=

= −i

∫

dp̃

2π

∫

dαfW(α, p̃, t0)Φ1(t1, t2),

〈φq(t1)φq(t2)〉 = 0 by construction. (41)

It is interesting that the first variation Φ(t, t′) can be

expressed in the term of the Jacobi elliptical functions.

One can note that

∂t {φ̈0
c(t) +

λ

6
[φ0

c(t)]
3} = 0

gives

{

∂2
t +

λ

2
[φ0

c(t)]
2

}

φ̇0
c(t) = L̂tφ̇

0
c(t) = 0. (42)

It means that φ̇0
c(t) ≡ f1(t) is the first particular solu-

tion of Eq. (40) on Green’s function G(t, t′)

Φ1(t, t
′) = G(t, t′) = θ(t− t′)[c1(t

′)f1(t) + c2(t
′)f2(t)].

(43)

By usual procedure we can construct the second partic-

ular solution and obtain expression for the first variation

Φ1(t1, t2) = θ(t1 − t2)
6

λφ2
max

×

×
[

cn

(

1

2
;

√

λ

6
φmaxt1 + C

)

ċn

(

1

2
;

√

λ

6
φmaxt2 + C

)

−

− cn

(

1

2
;

√

λ

6
φmaxt2 + C

)

ċn

(

1

2
;

√

λ

6
φmaxt1 + C

)

+

+ ċn

(

1

2
;

√

λ

6
φmaxt1 + C

)

×

× ċn

(

1

2
;

√

λ

6
φmaxt2 + C

)

(t1 − t2)

]

, (44)

where

dcn(k2; t)

dt
= −sn(k2; t)dn(k2; t). (45)

Conclusions. Let formulate once again the main

results obtained in the paper:

1) the systematic procedure of computing quantum

corrections in the framework of Keldysh formalism is

described;

2) analytical expressions for pressure relaxation in

the scalar field model of [4] are presented;

3) explicit equations for the next-to-leading order

corrections are written down.

The authors are grateful to A.G. Semenov for many

useful discussions of Keldysh formalism and its applica-

tions.
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