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Calculation of QCD parameters by using the jet resolution parameter
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We describe the measurement of the coupling constant from both the dispersive and the shape function

models. This parameter depends on the scale at which the QCD process occurs. We present distributions of

the jet resolution parameter (Y3). This parameter is one observable among the event shape variables. Both

models are divided into the perturbative as well as the non-perturbative regions. The average value of the

strong coupling constant is αs = 0.11887 ± 0.03537 being consistent with world average. We will explain all

these features in this paper.
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I. Introduction. The ultimate goal of research in

high-energy physics is to understand and describe the

structure of matter and its interactions. There are four

known forces governing our world: gravitational, weak,

electromagnetic, and strong. Only the last three play

a major role in the microscopic world. In the modern

language of physics, interactions are due to exchange

of field quanta that determine the properties of these

interactions. The interactions of quarks and gluons are

described by quantum chromo dynamics (QCD), a non-

abelian gauge theory based on the SU (3) color symme-

try group. Color constitutes the equivalent of the elec-

tric charge in electromagnetic interactions. The effec-

tive strong coupling constant as depends on the scale

at which the QCD process occurs. The solution of the

renormalization group equation in leading order leads

to:

αs(Q
2) =

4π

β0 ln(Q2/Λ2)
, (1)

where Q2 denotes the scale at which as is probed and

Λ is a QCD cutoff parameter. The parameter β0 =

= 11− (2/3)Nf depends on the number of quark flavors

(Nf ) in the theory. Since the known number of flavors is

six, β0 > 0, and the coupling constant becomes smaller

the larger the scale Q2. The property of asymptotic free-

dom has been proven rigorously and allows us to make

predictions for the properties of strong interactions in

the perturbative QCD regime, in which as is small.

Quantum chromo dynamics has two properties that

make it much more difficult to work with theoretically

than electroweak theory. The first property is that the

coupling constant is large, making the use of perturba-

tion theory difficult. The strong coupling constant de-

pends on the scale, as described above, and cross sec-
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tions can be calculated only for scatterings with a hard

scale, for which as is small enough. The second property

is the non-abelian nature of the interaction. Gluons can

interact with other gluons, leading to confinement of

color [1].

The description of e+e− annihilation into hadronic

events involves a number of components: the Ecm de-

pendence of the total cross section and flavor composi-

tion, multi parton matrix elements, angular orientation

of events, initial-state photon bremsstrahlung and ef-

fects of initial-state electron polarization [2].

The aim of the present investigation is to justify the

measure of the coupling constant in perturbative as well

as in nonperturbative theory by using the jet resolu-

tion parameter as an event shape observable explained

in Section II. We define the power corrections in Sec-

tion III. Then we calculate the strong coupling constant

and the nonperturbative parameter by using the NLO

(Next-to-Leading Order) and NNLO (Next to Next to

Leading Order) corrections followed by the Dispersive

model and the Shape function model in Section IV. Sec-

tion 5 summarizes our conclusions.

II. The jet resolution parameters. In this sec-

tion we study the jet resolution parameters as an event

shape variable. Event shape observables measure geo-

metrical properties of hadronic final states at high en-

ergy particle collisions. They have been studied at e+e−

collider experiments. Apart from distributions of these

observables, we will also study the mean values as well

as the higher orders of the moments of event shape ob-

servables.

The jet resolution parameters yn are defined as the

particular values of ycut at which an event changes from

a (n− 1)-jet configuration to a n-jet configuration. The

same clustering algorithm as for jet rates is applied [3].
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We propose using the Durham algorithm (k⊥ algo-

rithm) for jets produced in the deep inelastic hadron

scattering process. On the theoretical side this im-

plies the presence of large order corrections that can-

not be resumed; on the experimental side the trouble

is that ghost jets may appear, i.e., jets along directions

where no particles are present. To cure this problem

the Durham algorithm was introduced, which is based

on the following definition of the test variable [4]. The

following distance measures are used for Durham algo-

rithm for every pair of hadrons hk and hl compute the

corresponding relative transverse momentum:

ykl =
2min(E2

k , E
2
l )(1− cos θkl)

E2
vis

, (2)

where Ek and El denote the energy of the final-state,

by θkl the angle between the momenta of hadrons.

Take the smallest value among E2
k and E2

l . If yij is

the smallest value ykl computed and ykl ≤ ycut com-

bine (Pi, Pj) into a single pre-cluster (pseudo particle)

Pij = Pi + Pj according to a recombination prescrip-

tion. For resolving jet structure, we define a resolution

parameter ycut = Q2
0/E

2
vis 6 1. Repeat this procedure

until all pairs of objects (particle and/or pseudo parti-

cles) have ykl > ycut. Whatever objects remain at this

stage are called jets (k algorithm). Clearly the reso-

lution criterion yDkl > ycut becomes, for small angles,

k2Tk > E2
visycut, where kTk is the transverse momen-

tum of the k-th particle to the direction of the l-th one.

In this way the algorithm tries to minimize the trans-

verse momentum and not the invariant mass. On the

other hand the recombination scheme is still given by

Pij [4, 5]. In this article, we use yD23 variable, which we

call y3. Now we present power corrections for this event

shape variable. By using the power correction, we can

calculate the coupling constants in the perturbative and

in the nonperturbative part of theory.

III. Power corrections. The n-th moment of an

event shape observable y is defined by:

〈yn〉 =

∫ ymax

0

yn
1

σhad

dσ

dy
dy, (3)

ymax is the kinematically allowed upper limit of the ob-

servable [6]. By naively neglecting the integration over

the unphysical range of negative variable values, we ob-

tain:

〈yn〉 =

∫ ymax

0

yn
1

σhad

dσ

dy
dy =

=

∫ ymax−ayP

−ayP

(y + ayP )n
1

σhad

dσpt

dy
dy. (4)

Discarding the integration over the kinematically

forbidden values of y. This leads to the nonperturbative

predictions. The prediction for the moment on hadron

level will be [7]:

〈y1〉 = 〈y1〉NLO + ayP, (5)

〈y2〉 = 〈y2〉NLO + 2〈y1〉NLO(ayP ) + (ayP )2, (6)

〈y3〉 = 〈y3〉NLO + 3〈y2〉NLO(ayP ) +

+ 3〈y1〉NLO(ayP )2 + (ayP )3, (7)

〈y4〉 = 〈y4〉NLO + 4〈y3〉NLO(ayP ) +

+ 6〈y2〉NLO(ayP )2 + 4〈y1〉NLO(ayP )3 + (ayP )4, (8)

〈y5〉 = 〈y5〉NLO +5〈y4〉NLO(ayP ) + 10〈y3〉NLO(ayP )2 +

+ 10〈y2〉NLO(ayP )3 + 5〈y1〉NLO(ayP )4 + (ayP )5. (9)

IV. Measurements of coupling constants. The

QCD running of αs implies that the effective coupling

αs(Q) is small at high energy Q. This property justifies

the use of perturbation theory for predicting jet observ-

ables, at least at asymptotic energies. Measurements of

the strong coupling constant (αs) are obtained by dif-

ferent observables, and different analysis methods serve

as an important consistency test of QCD. αs is mea-

sured at a given scale, QCD predicts its energy depen-

dence as described by the renormalization group equa-

tion [7]. A coupling constant is a number that deter-

mines the strength of the force exerted in an interaction.

For electromagnetism, the coupling constant is related

to the electric charge through the fine structure con-

stant. If the coupling constant gets very large compared

to unity, perturbation theory becomes useless, because

higher powers of the expansion parameter are bigger,

not smaller, than lower powers. This is called a strongly

coupled theory. Coupling constants in quantum field

theory end up depending on energy because of quantum

vacuum effects. A quantum field theory can be weakly

coupled at low energies and strongly coupled at high

energies, as is true with the fine structure constant a in

QED, or strongly coupled at low energies and weakly

coupled at high energies, as is true with the coupling

constant for quark and gluon interactions in QCD.

The analytical power ansatz for nonperturbative cor-

rections by Dokshitzer and Webber [8, 9] including the

Milan factor established by Dokshitzer [10, 11] is used to

determine αs from mean event shapes. This ansatz pro-

vides an additive term to the perturbative O(α2
s) QCD

prediction [12]:

〈y〉 = 〈ypert〉+ 〈ypow〉 =
1

σtot

∫

y
dy

dσ
dσ. (10)

In the following we calculate the strong coupling

constant in perturbative region as well as the non-

perturbative parameters by using different models.
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Calculations in perturbative QCD have been found

to give fairly accurate descriptions of cross sections up

to Next-to-Leading Order for a lot of different reactions.

The next step to a complete comprehension of QCD is

the understanding of the non-perturbative parts.

Perturbative QCD is (and continues to be) well

tested, and QCD studies have entered the precision era,

i.e. experiments are sensitive to genuine Quantum Field

Theory effects. Each order in the perturbative series

in helps to increase the reliability of QCD predictions.

Next-to-Leading Order theory includes only the pertur-

bative theory. The mean value of the jet resolution vari-

able as an event shape observable in the perturbative

prediction is:

〈Y pert
3 〉 = Af

αs(µ)

2π
+

(

Bf +Af β0 log
µ2

Q2

)[

αs(µ)

2π

]2

,

(11)

where Af = Af , Bf = Bf − 3
2 CA Af , β0 = (33 −

−2Nf )/12π, and µ being the renormalization scale. The

coefficient Af and Bf were determined from the O(α2
s)

perturbative calculations [13]. And the numerical val-

ues of these coefficients are tabulated in [14]. Quantum

chromo dynamics color factors are:

CA = 3, CF =
N2 − 1

2N
=

4

3
(12)

for N = 3 color quarks.

The above expansion can be including the next or-

der. This expansion told the next to next to leading or-

der. Consequently the Eq. (11) changes to the following

expansion:

〈Y pert
3 〉 = Af

αs(µ)

2π
+

(

Bf +Afβ0 log
µ2

Q2

)[

αs(µ)

2π

]2

+

+

[

Cf + 2Bfβ0 log
µ2

Q2
+Af

(

β2
0 log

2 µ2

Q2
+

+ β1 log
µ2

Q2

)][

αs(µ)

2π

]3

+O(α4
s). (13)

A. The dispersive model. The dispersive model gives

predictions for several observables and contains only

universal free parameters. Opposite to our previous

model, this model includes both perturbative region

and nonperturbative part of theory. It calculates the

strong coupling constant αs(MZ0) and the nonpertur-

bative constant α0(µI).

The perturbative constant is obtained from Eq. (11)

and the nonperturbative is given by:

〈ypow〉 = ayP = ay
4CF

π2
M

µI

Q
×

×

[

α0(µI)αs(µI)−

(

log
µ

µI

+ 1 +
k

4πβ0

)

· 2β0α
2
0(µI)

]

.

(14)

where α0 is a nonperturbative parameter accounting

for the contributions to the event shape below an in-

frared matching scale µI
∼= 2. In the (MS) renor-

malization scheme the constant k has the value k =

= (6718 − π2

6 )CA − 5
9Nf , with Nf = 5 at the studied

energies. The Milan Factor M is known in two loops

M = 1.49± 0.20 [10, 15].

We are using in this analysis the simulated hadron

data: Monte Carlo (MC: PYTHIA program) as well as

the DELPHI and OPAL experimental data to calculate

the strong coupling constant in perturbative theory for

different power corrections. The reason behind this is to

see if there are any differences between the lower and

the higher order moments.

Fig. 1 shows the mean value of the jet resolution pa-

rameter 〈Y3〉 up to the fifth order for the power correc-

tions as a function of the center of mass energy fitted

to the NLO and NNLO corrections. We also display the

mean value of the jet resolution variable fitted to the

Dispersive model. The figure indicates that the results

obtained from the DELPHI and OPAL data coincide

well within the statistical errors to those obtained from

the MC data. So according to this agreement, we have

made a single fitting procedure to MC data. We observe

the more agreement between the theory and experiment

as the order of the power correction increases.

By fitting the dispersive model with the available

data, we calculate the strong coupling constant (αS)

together with the non-perturbative parameter (α0). We

observe more agreement between this model with the

data than the NNLO predictions. Also there is more

consistency as the order of the power corrections in-

creases. The reason is that the dispersive model includes

both perturbative and the non-perturbative parts of the

QCD calculation, while the NNLO just includes the per-

turbative part of the theory. Our results for αs and α0

are tabulated in Tables I and II respectively.

A decrease in the value of the coupling constants is

quite visible by increasing the order of the power correc-

tion. We conclude that the coupling constant becomes

more consistent with the theoretical value by increasing

the order of the power corrections. Also the obtained

values are consistent with other event shape variables

[14] and QCD predictions [16]. The errors cited in the

table are statistical only.

B. The shape function model. Korchemsky and Tafat

[17] describe properties of the event shape variables

which are not included in NLO perturbation theory by a

so called shape function, and do not depend on the vari-
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Fig. 1. Fits of the Dispersive model and NLO and NNLO moments up to fifth order

able nor the centre of mass energy. This is more general

than the dispersive model, considering both as a shift

of the perturbative prediction and as a compression of

the distribution peak. The prediction is deduced from

studying the two jet region in the distribution of the

event shape variable y. The prediction for the differen-

tial distribution is:

1

σ

dσ

dy
=

∫ Qy

0

dε fy(ε)
dσNLO

dy

(

y −
ε

Q

)

(15)

with a non-perturbative function fy(ε), dependent on

one scale parameter ε. This function is derived from

the shape function f(εL, εR) [15], which depends on two

scale parameters εL, εR for the two hemispheres of the
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Fig. 2. Fits of the shape function model to PYTHIA data for 〈(Y3)
n〉

event. By the compression of the distribution the valid-

ity of the prediction is extended compared to the dis-

persive model to y ∼ ΛQCD/Q.

Table I

αs(MZ0) values of variable 〈Y3〉 for different orders

Event shape variables αs(MZ0 ) (NLO) αs(MZ0 ) (NNLO)

〈Y3〉1 0.1327 ± 0.02837 0.14545 ± 0.02256

〈Y3〉2 0.12935 ± 0.06056 0.13068 ± 0.05441

〈Y3〉3 0.11255 ± 0.04793 0.12029 ± 0.0501

〈Y3〉4 0.10557 ± 0.0610 0.10639 ± 0.0541

〈Y3〉5 0.10289 ± 0.04748 0.10411 ± 0.04086

Predictions for event shape variables in shape func-

tion model for non-perturbative parameters can be de-

rived, λ1 and λ2 can also be obtained from fit to the

data [16].

By using the relations for the distribution of the vari-

ables, we can calculate the mean values with respect to

Table II

α0(µI) values of variable 〈Y3〉 for different orders

Event shape variables α0(µI )

〈Y3〉1 0.58599 ± 0.0162

〈Y3〉2 0.57053 ± 0.04089

〈Y3〉3 0.56833 ± 0.0109

〈Y3〉4 0.56275 ± 0.01126

〈Y3〉5 0.557± 0.011393

non-perturbative distributions [17]. The shape function

model gives predictions for several observables and con-

tains only universal free parameters λ1, λ2 and αs(MZ0).

In this section, we give the obtained results in the fol-

lowing:

〈(Y3)
1〉 = 〈(Y3)

1〉PT +
λ1

Q
. (16)

Analogously for the second moments, we find [16]:

〈(Y3)
2〉 = 〈(Y3)

2〉PT + 2
λ1

Q
〈(Y3)

1〉PT +
λ2

Q2
. (17)
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Fig. 2 shows the mean value of 〈Y3〉 versus the center

of mass energy for both Monte Carlo and the experimen-

tal data up to forth order. We observe that the shape

function (solid line) follows the same trend as the re-

sults obtained from the data. In addition the obtained

values extracted from the experimental data are consis-

tent both with the Monte Carlo distribution and with

the shape function model. On the other hand, if we com-

pare our results with NNLO (dash line) and NLO (dot

line) predictions, we come to a conclusion that the shape

function model is in more agreement with the MC and

the experimental data, than with the NLO prediction.

The figure also indicates that there is an improvement

as the order of the power correction increases.

By fitting the shape function model (Eqs. (11) and

(16)) with the data, we obtain the values of the strong

coupling constant (αs) and the non-perturbative pa-

rameter (λ) up to the forth order. Our measured val-

ues are tabulated in Tables III for αs(MZ0). We ob-

serve that the mean value for our results in perturba-

tive region is: αs = 0.1163625 ± 0.01369. Also the ob-

tained mean value in non-perturbative part of model is

λ = 1.48599± 0.090688.

We conclude that the results obtained from the

above models conform well to the QCD prediction [16].

Table III

αs(MZ0) values of variable 〈Y3〉 for different orders

Event shape variables αs(MZ0 )

〈Y3〉1 0.12802 ± 0.01322

〈Y3〉2 0.11536 ± 0.01703

〈Y3〉3 0.11368 ± 0.01172

〈Y3〉4 0.10839 ± 0.01277

This work was funded by vice president for research

and technology of Ferdowsi University of Mashhad,

Code 2/31742.

V. Conclusions. In this article we study the prop-

erties of QCD predictions for calculation of different pa-

rameters in this theory. We have calculated both the

strong coupling constant (αs) in perturbative and the

free parameter in non-perturbative theories, by using

the dispersive as well as the shape function models.

To achieve this, the jet resolution parameter (as an

event shape variable) is employed. We have also used

the power corrections for our analyses. As we expected

the NNLO predictions give us more accurate with the

data than the NLO prediction. Having extracted the

corresponding parameters (coupling constants) in per-

turbative and non-perturbative parts of theory for each

model (by fitting the models with the experimental and

Monte Carlo (PYTHIA) data), we obtained the strong

coupling constant αs = 0.1163625 ± 0.01369. Our ob-

tained results are in a good agreement with the QCD

theory.
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