Регистрация изменения отношения темпов счета "север-юг" частиц космических лучей высоких энергий во время перемены полярности магнитного поля Солнца

A. В. Карелин^{a_1}), О. Адриани^{b,c_2}), Дж. Барбарино^{d,e_2}), Г. А. Базилевская^f, Р. Белотти^{g,h_2}), М. Боецио^{i_2}), Э. А. Богомолов^j, М. Бонджи^{с 2)}, В. Бонвичини^{i 2)}, С. Боттаи^{с 2)}, А. Бруно^{g, h 2)}, А. Вакки^{i 2)},

Е. Вануччини^{с 2)}, Г. И. Васильев^j, С. А. Воронов^a, А. М. Гальпер^a, К. Де Донато^{k, l 2)}, К. Де Сантис^{k, l 2)}, Н. Де

Симоне^{k,l2)}, В. Де Феличе^{k2)}, Дж. Зампаⁱ²⁾, Н. Зампаⁱ²⁾, Ф. Кафанья^{h2)}, Д. Кампана^{e2)}, Р. Карбоне^{e,l2)},

П. Карлсон^{т 2)}, М. Казолино^{k 2)}, Д. Кастеллини^{п 2)}, А. Н. Квашнин^f, С. В. Колдашов^a, С. А. Колдобский^a, С.

Ю. Крутьков^{*j*}, А. А. Леонов^{*a*}, Л. Марчелли^{*k* 2)}, М. Мартучи^{*k*, *q* 2)}, А. Г. Майоров^{*a*}, В. В. Малахов^{*a*}, В. Менн^{*p* 2)},

М. Мерге^{k,l2)}, В. В. Михайлов^a, Э. Мокьюттиⁱ²⁾, А. Монако^{h2)}, Н. Мори^{b,c2)}, Р. Мунини^{i,o2)}, Дж. Остерия^{e2)},

 Φ . Пальма^{$k,l\,2)}, Б. Панико^{<math>e\,2)}$, П. Папини^{$c\,2)}, М. Пирс^{<math>m\,2)}$, П. Пикоцца^{$k,l\,2)}, М. Риччи^{<math>q$}, С. Риччиарини^c,</sup></sup></sup></sup></sup>

М. Л. Розетто^{*m*, 2)}, М. Симон^{*p*2)}, Р. Саркар^{*i*2)}, В. Скотти^{*d*, *e*2)}, Р. Спарволи^{*k*, *l*2)}, П. Спилантини^{*b*, *c*2)},

В. Формато^{*i*,*o*2)}, Ю. Т. Юркин^{*a*}

^а Национальный исследовательский ядерный университет МИФИ, 115409 Москва, Россия

^bUniversity of Florence, I-50019 Sesto Fiorentiono, Florence, Italy

^c INFN, Sezione di Florence, I-50019 Sesto Fiorentiono, Florence, Italy

^dUniversity of Naples "Federico II", I-80126 Naples, Italy

^eINFN, Sezione di Naples, I-80126 Naples, Italy

^f ФИАН им. Лебедева, 119991 Москва, Россия

^gUniversity of Bari, I-70126 Bari, Italy

^hINFN, Sezione di Bari, I-70126 Bari, Italy

ⁱINFN, Sezione di Trieste, I-34149 Trieste, Italy

^ј ФТИ им. Иоффе, 194021 С.-Петербург, Россия

^kINFN, Sezione di Rome "Tor Vergata", I-00133 Rome, Italy

¹University of Rome "Tor Vergata", I-00133 Rome, Italy

^mKTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics AlbaNova University Centre,

SE-10691 Stockholm, Sweden

ⁿIFAC, I-50019 Sesto Fiorentino, Florence, Italy

^oUniversity of Trieste, I-34147 Trieste, Italy

^pUniversity of Siegen, D-57068 Siegen, Germany

^qINFN, Laboratori Nazionali di Frascati, I-00044 Frascati, Italy

Поступила в редакцию 22 декабря 2014 г.

С помощью калориметра, входящего в состав экспериментального комплекса спутникового эксперимента ПАМЕЛА, находящегося на орбите с июня 2006 г. по сегодняшний день, зарегистрировано изменение отношения интенсивностей частиц космического излучения высоких энергий, приходящих с севера и юга в период 2010–2014 гг. На часть данного периода времени пришлось изменение полярности магнитного поля Солнца. Таким образом, полученные результаты позволяют сделать выводы о связи северно-южной асимметрии потоков частиц космических лучей с магнитным полем Солнца.

DOI: 10.7868/S0370274X15040037

M. Martucci, W. Menn, M. Merge', E. Mocchiutti, A. Monaco, N. Mori, R. Munini, G. Osteria, F. Palma, B. Panico, P. Papini, $\mathrm{M.\,Pearce,\ P.\,Picozza,\ M.\,Ricci,\ M.L.Rosetto,\ S.B.\,Ricciarini,}$ R. Sarkar, V. Scotti, M. Simon, R. Sparvoli, P. Spillantini, A. Vacchi, E. Vannuccini, G. Zampa, N. Zampa

¹⁾e-mail: karelin@hotbox.ru

²⁾O. Adriani, G.C. Barbarino, R. Bellotti, M. Boezio, M. Bongi, V. Bonvicini, S. Bottai, A. Bruno, F. Cafagna, D. Campana, P. Carlson, M. Casolino, G. Castellini, C. De Donato, C. De Santis, N. De Simone, V. Di Felice, V. Formato, L. Marcelli,

В предыдущей работе [1] по данным спутникового эксперимента ПАМЕЛА за период 06.2006-08.2009 была зарегистрирована северно-южная асимметрия частиц космического излучения. О асимметрии потоков частиц космического излучения с северного и южного направлений в то же время свидетельствовал и ряд других измерений, выполненных с помощью нейтронных мониторов и на баллонах в верхних слоях атмосферы [2-4]. При этом величина асимметрии составляла около 3 % для частиц с энергией порядка 10 ГэВ и уменьшалась с ростом энергии. Одно из возможных объяснений этому факту было дано в ряде теоретических работ [5, 6]. В них было показано, что различие интенсивностей может быть связано с распространением космических лучей через разные части гелиосферы. Чтобы проверить гипотезу о связи наблюдаемой асимметрии с солнечным магнитным полем, в эксперименте ПАМЕЛА были проведены дополнительные измерения в период с 24.02.2010 по 31.07.2014. Данный период включает в себя временной интервал, в течение которого происходила смена полярности магнитного поля Солнца. Ожидалось, что такой глобальный процесс будет оказывать влияние на величину эффекта асимметрии.

Экспериментальный комплекс ПАМЕЛА в составе космического аппарата Ресурс ДК1 был выведен на орбиту Земли в июне 2006 г. Он находится в активном состоянии и по сегодняшний день. Орбита спутника – эллиптическая с наклоненом 70.4° и высотой 350-650 км до ноября 2010 и 510-610 км после. Основная задача эксперимента ПАМЕЛА изучение состава и энергетических спектров частиц космического излучения в широком диапазоне энергий. Прибор ПАМЕЛА состоит из нескольких детекторов: системы времени пролета с тремя двойными плоскостями сцинтилляторов, магнитного спектрометра с системой координатных кремниевых детекторов, электромагнитного калориметра, нижнего ливневого сцинтилляционного детектора С4, детектора нейтронов и счетчиков системы антисовпадений. Геометрический фактор для высокоэнергичных частиц (>1ГэВ), проходящих в пределах чувствительного объема магнитного спектрометра, равен 21.6 см² ср. что соответствует угловой апертуре $19^{\circ} \times 16^{\circ}$. Эта апертура служит основной апертурой прибора. Одной из возможностей прибора является расширение угловой апертуры с помощью триггеров, вырабатываемых позиционно-чувствительным калориметром и нижним сцинтилляционным детектором С4. Это позволяет существенно увеличить статистику для регистрируемых частиц высоких энергий. Триггеры вырабатываются при условии превышения энерговыделением внутри калориметра или С4 пороговых величин, которые соответствуют возникновению в калориметре мощного каскада вторичных частиц при взаимодействии падающих частиц с его веществом. С помощью разработанной методики восстановления направления прилета частиц в калориметр, речь о которой пойдет ниже, возможно определять траекторию первичной частицы по оси каскада, развившегося в калориметре, до углов к вертикали $\sim 75^{\circ}$. При этом апертура прибора становится в десятки раз больше основной, что дает возможность увеличить объем зарегистрированных высокоэнергетичных частиц. В дальнейшем будем называть расширенную таким образом апертуру широкой апертурой. Калориметр состоит из 22 слоев. Каждый слой образован двумя плоскостями кремниевых стриповых детекторов и пластиной из вольфрама толщиной 2.3 мм. Каждая плоскость кремниевых детекторов включает в себя 96 стрипов с шагом 2.2 мм. Стрипы в соседних плоскостях расположены ортогонально друг другу, что позволяет измерять пространственное распределение вторичных частиц в калориметре в двух проекциях. Суммарная толщина калориметра составляет 0.6 ядерной длины взаимодействия (17 рад. длин). Подробное описание калориметра прибора ПАМЕЛА приведено в работе [7].

Предметом анализа служили события, в которых частицы приходили в широкой апертуре. Основным критерием для первоначального отбора является пороговая величина полного энерговыделения в калориметре. Последнее измеряется в единицах "мип" – энерговыделении, регистрируемом при прохождении одной минимально ионизирующей частицы в одном слое детекторов. Этот критерий позволяет выделять частицы высоких энергий, испытавшие взаимодействие в калориметре. Фиксированная величина полного энерговыделения в калориметре соответствует различным первоначальным энергиям для ядер, электронов и протонов. Расчет показал, что конкретно выбранное энерговыделение, отвечающее некоторой величине первоначальной энергии электронов, согласуется с в несколько раз большей кинетической энергией протонов. В отобранных по данному критерию событиях преобладают протоны и ядра гелия в соответствии с их подавляющим содержанием в космических лучах (около 90% протонов, около 10% ядер гелия, на остальные частицы приходится менее 1%). Вместе с тем, поскольку низкоэнергичные тяжелые ядра дают во много раз большее, чем протоны и ядра гелия, энерговыделение, то их доля в отобранных событиях значительно возрастает. Так, при пороге в 4000 мип относительное количество регистрируемых частиц примерно таково: 5% низкоэнергетичных тяжелых ядер, 55 % протонов с энергией выше 20 ГэВ, 15 % ядер гелия с энергией выше 10 ГэВ/н, 25% электронов с энергией выше 7ГэВ. Для определения направления оси ливня в калориметре был использован итерационный подход, основанный на методе наименьших квадратов [8]. Направление первичной частицы совпадает с осью ливня в калориметре. Из отобранных событий рассматривались только зарегистрированные в то время, когда спутник находился в области выше 60° северной широты и ниже 60° южной широты в географической системе координат, а сами частицы приходили в прибор с направлений не меньше 60° и -60° в той же системе координат. Таким образом отбирались частицы, приходящие с северных и южных направлений.

Порядковый номер	Период времени (ч.м.г.)
временного интерва-	
ла	
1	24.02.1002.04.10; 10.05.28;
	17.06.17 - 20.06.10; $16.11.10;$
	19.11.00-05.01.11
2	06.01.11 - 07.04.11
3	08.04.11 – 06.07.11
4	08.07.11 - 02.08.11; $05.09.11 -$
	$20.09.11;\ 17.10.11 – 02.12.11$
5	03.12.11 - 01.03.12
6	02.03.12–11.04.12; 10.05.12–
	27.06.12;
7	28.06.12–24.07.12; 16.08.12–
	19.10.12;
8	20.10.12 - 27.01.13
9	28.01.13 - 27.04.13
10	28.04.13 - 26.07.13
11	27.07.13 - 28.10.13
12	29.10.13 - 29.01.14
13	30.01.14 - 30.04.14
14	01.05.01 - 31.07.14

Для характеристики асимметрии была использована величина (Ns-Nn)/(Nn+Ns), где Ns – темп счета отобранных согласно описанной выше процедуре событий со стороны Северного магнитного полюса Земли, а Ns со стороны Южного. Изменение величины (Ns-Nn)/(Nn+Ns) со временем при пороге 4000 мип продемонстрировано на рис. 1. Время отсчитывается с 24 февраля 2010 г. В таблице приведены временные интервалы, соответствующие каждой точке. Пропуски во времени связаны с исключением из рассмотрения временных интервалов с измененным режимом работы прибора. Один временной интервал равен полным 90

Рис. 1. Изменение величины (Ns-Nn)/(Ns+Nn) со временем. Один временной интервал включает полные 90 дней наблюдений. Сплошной линией отмечена индукция южного, а штриховой – северного полярного магнитного поля Солнца (по данным обсерватории Уилкокс при Стэнфордском университете). Порог полного энерговыделения в калориметре для отбора равен 4000 мип

Рис. 2. Изменение величины (Ns-Nn)/(Ns+Nn) со временем. Один временной интервал включает полные 90 дней наблюдений. Порог полного энерговыделения в калориметре для отбора равен 10000 мип

дням работы. Также на рис. 1 показана динамика полярного магнитного поля Солнца в его северном и южном полушариях (информация взята с сайта http://www.standford.edu/polar.html обсерватории Уилкокс при Стэнфордском университете). Для 90-дневного интервала значения были усреднены. До восьмой точки темп счета на Южном магнитном полюсе Земли выше, чем на Северном. Далее, начиная с восьмой точки, наблюдается уменьшение рассматриваемого отношения. Восьмая точка, как это видно из таблицы, соответствует временному интервалу 20.10.12–27.01.13. Согласно данным обсер-

Письма в ЖЭТФ том 101 вып. 3-4 2015

Рис. 3. Изменение величины (Ns-Nn)/(Ns+Nn) со временем. Один временной интервал включает полные 90 дней наблюдений. Порог полного энерговыделения в калориметре для отбора равен 20000 мип

ватории Уилкокс в июне 2012 г. произошло изменение северной полярности Солнца. На рис. 2 и 3 также показано поведение величины (Ns-Nn)/(Nn+Ns), но для более высоких порогов: 10000 и 20000 мип соответственно. Повышенный порог означает более высокие значения энергии частиц и уменьшение доли тяжелых ядер. Как и ожидалось, с ростом порога отношение (Ns-Nn)/(Nn+Ns) стремится к нулевому значению.

Таким образом, рассматриваемое отношение начинает расти в период 20.10.12–27.01.13, когда впервые за данный солнечный цикл произошло перенаправление северного магнитного полюса Солнца. Это свидетельствует о корреляции асимметрии потоков частиц космического излучения в направлениях север–юг с солнечным магнитным полем.

Работа выполнена при поддержке Российского научного фонда (грант #14-12-00373) и Гранта Президента Российской Федерации для поддержки молодых ученых # MK-4599.2014.2.

 А.В. Карелин, О. Адриани, Дж. Барбарино, Г.А. Базилевская, Р. Белотти, М. Боецио, Э.А. Богомолов, Л. Бонеки, М. Бонджи, В. Бонвичини, С. Боттаи, А. Бруно, А. Вакки, Е. Ваннучини, Г.И. Васильев, С.А. Воронов, А.М. Гальпер, К. Де Донато, К. Де Сантис, Н. Де Симоне, В. Де Феличе, В. Г. Зверев, Дж. Зампа, Н. Зампа, Ф. Кафанья, Д. Кампана, Р. Карбоне, П. Карлсон, М. Казолино, Д. Кастеллини, А.Н. Квашнин, С.В. Колдашов, С.А. Колдобский, С.Ю. Крутьков, А.А. Леонов, В. Мальвецци, Л. Марчелли, М. Мартучи, А. Г. Майоров, В. В. Малахов, В. Менн, М. Мерге, В. В. Михайлов, Э. Мокьютти, А. Монако, Н. Мори, Дж. Остерия, Ф. Пальма, П. Папини, М. Пирс, П. Пикоцца, Ч. Пиззолотто, М. Риччи, С. Риччиарини, М. Симон, Р. Саркар, Р. Спарволи, П. Спилантини, Ю.И. Стожков, Ю.Т. Юркин, ЖЭТФ 146(3), 312 (2013); А.V. Karelin, O. Adriani, G.C. Barbarino, G.A. Bazilevskaya, R. Bellotti, M. Boezio, E.A. Bogomolov, L. Bonechi, Bongi, V. Bonvicini, S. Bottai, A. Bruno, М. A. Vacchi, E. Vannuccini, G. I. Vasilvev, S. A. Voronov, A. M. Galper, I. A. Danilchenko, C. De Donato, C. De Santis, N. De Simone, V. Di Felice, V.G. Zverev, G. Zampa, N. Zampa, F. Cafagna, D. Campana, R. Carbone, P. Carlson, M. Casolino, G. Castellini, A.N. Kvashnin, S.V. Koldashov, S.A. Koldobskiy, S.Y. Krutkov, A.A. Leonov, V. Malvezzi, L. Marcelli, M. Martucci, A. G. Mayorov, V. V. Malakhov, W. Menn, M. Merge, V.V. Mikhailov, E. Mocchiutti, A. Monaco, N. Mori, G. Osteria, F. Palma, P. Papini, M. Pearce, P. Picozza, C. Pizzolotto, M. Ricci, S.B. Ricciarini, M.F. Runtso, R. Sarkar, M. Simon, R. Sparvoli, P. Spillantini, and Y.T. Yurkin, JETP 117(2), 268 (2013).

- Г. Ф. Крымский, П. А. Кривошапкин, В. П. Мамрукова, Г. В. Скрипин, Геомагнетизм и аэрономия 21(5), 923 (1981).
- M. A. Shea and D. F., Smart, Ital. di Fisica, Bologna, Italy 398 (1988).
- 4. Y.I. Stozhkov, G.A. Bazilevskaya, P.E. Pokrevsky, N.S. Svirzhevsky, I.M. Martin, and A. Turtelli, J. Geophys. Res. A **101**, 2523 (1996).
- J. Chen, J. W. Bieber, and M. A. Pomerantz, Geophys. Res. 96, 569 (1991).
- D. B. Swinson, M. A. Shea, and J. E. Humble, Geophys. Res. 91, 2943 (1986).
- M. Boezio, V. Bonvicini, E. Mocchiutti, P. Schiavon, G. Scian, A. Vacchi, G. Zampa, and N. Zampa, Nucl. Instr. and Meth. in Phys. Res. A 487, 407 (2002).
- S. V. Borisov, S. A. Voronov, and A. M. Galper, ΠΤЭ 1, 5 (2013).